Random Walks on Graphs

Following Spielman, Chapter 10. For the randomness extractors part, see Chapter 6 of Vadhan's monograph.

Gil Cohen

November 16, 2020

Overview

- 1 Basic definitions
- 2 The stable distribution
- 3 The rate of convergence
- 4 Applications to randomness extractors

Random walks

Let G = (V, E) be an undirected graph, and \mathbf{p} a probability distribution on V, thought of as a vector $\mathbf{p} \in \mathbb{R}^V$.

A random step on G, starting from a probability distribution \mathbf{p} , is the process in which we

- **1** Sample v according to \mathbf{p} ;
- 2 Sample a neighbor u of v uniformly at random, and return u.

If \mathbf{p}_{new} is distribution over V after taking a random step, then for every $v \in V$,

$$\mathbf{p}_{\mathsf{new}}(v) = \sum_{u \in \Gamma(v)} \frac{\mathbf{p}(u)}{\deg(u)}.$$

Random walks

$$\mathbf{p}_{\text{new}}(v) = \sum_{u \in \Gamma(v)} \frac{\mathbf{p}(u)}{\deg(u)}. \quad \int_{\mathbf{g}} \int_{$$

Note that

$$\mathbf{p}_{\mathsf{new}} = \mathbf{W}_{G}\mathbf{p} = \mathbf{M}_{G}\mathbf{D}_{G}^{-1}\mathbf{p}$$
 .

A length t random walk is the probabilistic process of taking t consecutive random steps. The corresponding distributions are given by

$$\mathbf{p}_t = \mathbf{W} \mathbf{p}_{t-1} = \mathbf{W}^2 p_{t-2} = \cdots = \mathbf{W}^t \mathbf{p}_0.$$

The normalized adjacency matrix

We define to the normalized adjacency matrix of G by

$$\mathbf{A}_G = \mathbf{D}_G^{-1/2} \mathbf{M}_G \mathbf{D}_G^{-1/2}$$

Note that A_G is symmetric for undirected graph G and that

$$\mathbf{A}_G = \mathbf{D}_G^{-1/2} \mathbf{W}_G \mathbf{D}_G^{1/2}.$$

Claim

 ψ is an eigenvector of **A** of eigenvalue ω if and only if $\mathbf{D}^{1/2}\psi$ is an eigenvector of **W** of eigenvalue ω .

$$W(D^{\frac{1}{2}}\gamma) = (D^{\frac{1}{2}}AD^{\frac{1}{2}}(D^{\frac{1}{2}}\gamma)) \underbrace{(D^{\frac{1}{2}}\gamma)^{T}(D^{\frac{1}{2}}\gamma)}_{\gamma T D \gamma'}$$

$$= D^{\frac{1}{2}}A\gamma = \omega(D^{\frac{1}{2}}\gamma)$$

The normalized adjacency matrix

A fact you should know (and prove to yourself!)

Lemma

For $n \times n$ matrices **A**, **B**,

$$\phi_{\mathbf{AB}}(x) = \phi_{\mathbf{BA}}(x).$$

More generally, if **A** is an $n \times m$ matrix and **B** an $m \times n$ matrix with n > m then

$$\phi_{\mathbf{AB}}(x) = x^{n-m}\phi_{\mathbf{BA}}(x).$$

In particular, the spectrum remains the same (and the kernel increase when $n \neq m$).

The normalized adjacency matrix

We denote the eigenvalues of ${\bf W}$ by $\omega_1 \geq \omega_2 \geq \cdots \geq \omega_n$. Note that the degree vector ${\bf d}$ is an eigenvector of ${\bf W}$ of eigenvalue $\omega_1 = 1$. Indeed, ${\bf d}({\bf v}) = {\bf d}_{\bf v}({\bf w})$

$$Wd = (MD^{-1})d = M(D^{-1}d) = M1 = d.$$

Define

$$\psi_1 = rac{\sqrt{\mathsf{d}}}{\|\sqrt{\mathsf{d}}\|} = \sqrt{rac{\mathsf{d}}{\mathbf{1}^T\mathsf{d}}}.$$

Thus, ψ_1 is an eigenvector of **A** of eigenvalue 1. The

Perron-Frobenius Theorem implies that

$$\mathsf{Spec}(\mathbf{W}) = \mathsf{Spec}(\mathbf{A}) \subset [-1, 1].$$

D-12 = 1d

The stable distribution

We denote $\omega(G) = \max(\omega_2, -\omega_n)$. By Perron-Frobenius, G is connected and not bipartite if and only if $\omega(G) < 1$.

Theorem

Assume that G is connected and not bipartite. Then, a random walk from any initial distribution converges to the stable distribution

$$\pi = rac{\mathsf{d}}{\mathbf{1}^T \mathsf{d}}.$$

$$A = \sum_{i=1}^{n} \omega_{i} \Psi_{i} \Psi_{i}^{T} = A \Psi_{i} \Psi_{i}^{T} + \sum_{i=1}^{n} \omega_{i} \Psi_{i} \Psi_{i}^{T}$$

$$W = D^{\frac{1}{2}} \Psi_{i} \Psi_{i}^{T} D^{-\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i} \Psi_{i}^{T} D^{-\frac{1}{2}}$$

$$W = D^{\frac{1}{2}} \Psi_{i} \Psi_{i}^{T} D^{-\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i} \Psi_{i}^{T} D^{-\frac{1}{2}}$$

$$W = D^{\frac{1}{2}} \Psi_{i} \Psi_{i}^{T} D^{-\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{-\frac{1}{2}}$$

$$W = D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}}$$

$$\Psi_{i} = D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}}$$

$$\Psi_{i} = D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}}$$

$$\Psi_{i} = D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}} + \sum_{i=1}^{n} \omega_{i} D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}}$$

$$\Psi_{i} = D^{\frac{1}{2}} \Psi_{i}^{T} \Psi_{i}^{T} D^{\frac{1}{2}} \Psi_{i}^{T} D^{\frac{1}{$$

The rate of convergence

Theorem

Let $p_0 = e(u)$ for some $u \in V$. Then, for every $v \in V$,

$$|p_t(v) - \pi(v)| \leq \omega(G)^t \cdot \sqrt{\frac{\deg(v)}{\deg(u)}}.$$

$$W = D^{\frac{1}{2}}AD^{-\frac{1}{2}}$$

$$W^{t} = D^{\frac{1}{2}}A^{t}D^{-\frac{1}{2}}$$

$$W^{t}e(u) = \pi + \sum_{i=1}^{n} \omega_{i}^{t}D^{\frac{1}{2}}Y_{i}Y_{i}^{T}D^{\frac{1}{2}}e(u)$$

$$e(v)^{T} W^{t} e(u) = \pi(v)^{T} \sum_{i=2}^{n} (v^{T} \nabla^{2} V_{i}^{T} \nabla^{2} V_{i$$

Overview

- 1 Basic definitions
- 2 The stable distribution
- 3 The rate of convergence
- 4 Applications to randomness extractors

Definition

A distribution X has min entropy k if $\forall x, \Pr[X = x] \leq 2^{-k}$.

Claim

A distribution with min entropy k is a convex combination of distributions each is uniform over a set of size at least 2^k .

Definition

The statistical distance (aka total variation distance) between two distribution X, Y with support contained in D is given by

$$\mathbf{SD}(X,Y) = \max_{T \subseteq D} |\Pr[X \in T] - \Pr[Y \in T]|.$$

If $SD(X, Y) \leq \varepsilon$ we write $X \approx_{\varepsilon} Y$.

Claim

$$SD(X,Y) = \frac{1}{2} \cdot ||X - Y||_1 = \sum_{z \in D}^{\infty} |X(z) - Y(z)|.$$

/ Min entropy of X is h

Definition

A function Ext : $\{0,1\}^n \times \{0,1\}^s \to \{0,1\}^m$ is a (k,ε) -seeded extractor if for every k-source X, $\operatorname{Ext}(X,Y) \approx_\varepsilon U_m$.

Proposition

For every $n \ge k$ and ε there exists a (k, ε) -seeded extractor with

$$s = \log(n - k) + 2\log \frac{1}{\varepsilon} + O(1)$$

$$m = k - 2\log \frac{1}{\varepsilon} - O(1).$$

$$f = 0$$

Seeded extractors from random walks

The construction of Ext.

Set s = td. Consider a $D = 2^d$ -regular graph G on $N = 2^n$ vertices. On input $x \in \{0,1\}^n$, $y \in \{0,1\}^s$ proceed as follows:

- 1 Interpret the given sample $x \sim X$ as a vertex.
- 2 Take a length-t random walk on G and return the last vertex on the path.

analysis.

While we can proceed as before, we will take a slightly different approach. Write \mathbf{p} for the distribution induced by X.

Seeded extractors from random walks

Wtp
$$\|p_{\varepsilon}-\pi\|_{2}^{2}=\sum_{i}\left(p_{\varepsilon}(z)-\frac{1}{N}\right)^{2}$$

Claim

It holds that $\|\mathbf{p}_t - \boldsymbol{\pi}\|_2 \le 2\omega(G)^t \cdot 2^{-k/2}$.

Claim

For every
$$\mathbf{x} \in \mathbb{R}^N$$
, $\|\mathbf{x}\|_1 \leq \sqrt{N} \cdot \|\mathbf{x}\|_2$.

$$SD(Ext(X,Y),U) \leq 2\omega(G)^t \cdot 2^{(n-k)/2}. \leq \mathcal{E}$$

We will later see that there are graphs with $\omega(G) = O\left(\frac{1}{\sqrt{D}}\right)$.

Thus,
$$s = n - k + 2 \log \frac{1}{\varepsilon} + O(1)$$
.
 $5 = n - k + 2 \log \frac{1}{\varepsilon} + O(1)$

$$\left| \begin{array}{c} t/2 \\ 2D_{12} \\ 2 \\ 2 \end{array} \right| \stackrel{\text{N-k}}{>} 2^{\frac{1}{2}} \frac{1}{2}$$

$$D = 2^{n}$$
 regular

 $N = 2^{n}$ O_{7}^{n}
 $X \in \{0, 1\}^{n} = V$
 $Y = \{0, 1\}^{n}$
 $S = \{0, 1\}^{n}$

$$\| p_{t} - \pi \|_{2}^{2} = \| W^{t} p - \pi \|_{2}^{2}$$

$$= \| W^{t} (p - \pi) \|_{2}^{2}$$

$$= \| W^{t} (p - \pi) \|_{2}^{2}$$

$$= (p - \pi)^{T} (W^{t})^{T} W^{t} (p - \pi)$$

$$= (p - \pi)^{T} W^{2t} (p - \pi) \leq \omega(G)^{2t} (p - \pi)^{T} (p - \pi)$$

$$= (p - \pi)^{T} W^{2t} (p - \pi) \leq \omega(G)^{2t} (p - \pi)^{T} (p - \pi)$$

$$= (p - \pi)^{T} W^{2t} (p - \pi) \leq \omega(G)^{2t} (p - \pi)^{T} (p - \pi)$$

$$(p-\pi)^{\mathsf{T}}(p-\pi) = p^{\mathsf{T}}p - 2p^{\mathsf{T}}\pi + \pi^{\mathsf{T}}\pi$$

$$p^{\mathsf{T}}p = \sum_{i=1}^{N} p_i^{i} \leq p^{\mathsf{T}}\pi + \sum_{i=1}^{N} p_i^{i} + \sum_{i=$$

$$\| p_{t} - \pi \|_{2}^{2} \leq \omega(G)^{2t} \underbrace{(p - \pi)^{T} (p - \pi)}_{\leq 2^{-k}}$$
 $\| p_{t} - \pi \|_{2} \leq \omega(G)^{t} 2^{-k/2}$

