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Random Walks on Graphs

Basic definitions

Random walks

Let G = (V ,E ) be an undirected graph, and p a probability
distribution on V , thought of as a vector p 2 RV .

A random step on G , starting from a probability distribution p, is
the process in which we

1 Sample v according to p;

2 Sample a neighbor u of v uniformly at random, and return u.

If pnew is distribution over V after taking a random step, then for
every v 2 V ,

pnew(v) =
X

u2�(v)

p(u)
deg(u)

.
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Random Walks on Graphs

Basic definitions

Random walks

pnew(v) =
X

u2�(v)

p(u)
deg(u)

.

Note that
pnew = WGp = MGD

�1
G p

A length t random walk is the probabilistic process of taking t

consecutive random steps. The corresponding distributions are
given by

pt = Wpt�1 = W2
pt�2 = · · · = Wtp0.
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Random Walks on Graphs

Basic definitions

The normalized adjacency matrix

We define to the normalized adjacency matrix of G by

AG = D�1/2
G MGD

�1/2
G .

Note that AG is symmetric for undirected graph G and that

AG = D�1/2
G WGD

1/2
G .

Claim

 is an eigenvector of A of eigenvalue ! if and only if D1/2 is an

eigenvector of W of eigenvalue !.
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Random Walks on Graphs

Basic definitions

The normalized adjacency matrix

A fact you should know (and prove to yourself!)

Lemma

For n ⇥ n matrices A,B,

�AB(x) = �BA(x).

More generally, if A is an n ⇥m matrix and B an m ⇥ n matrix

with n > m then

�AB(x) = x
n�m�BA(x).

In particular, the spectrum remains the same (and the kernel

increase when n 6= m).



Random Walks on Graphs

Basic definitions

The normalized adjacency matrix

We denote the eigenvalues of W by !1 � !2 � · · · � !n. Note
that the degree vector d is an eigenvector of W of eigenvalue
!1 = 1. Indeed,

Wd = (MD�1)d = M(D�1d) = M1 = d.

Define

 1 =

p
d

k
p
dk

=

r
d

1Td
.

Thus,  1 is an eigenvector of A of eigenvalue 1. The
Perron-Frobenius Theorem implies that
Spec(W) = Spec(A) ⇢ [�1, 1].
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Random Walks on Graphs

The stable distribution

The stable distribution

We denote !(G ) = max(!2,�!n). By Perron-Frobenius, G is
connected and not bipartite if and only if !(G ) < 1.

Theorem

Assume that G is connected and not bipartite. Then, a random

walk from any initial distribution converges to the stable

distribution

⇡ =
d

1Td
.
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Random Walks on Graphs

The stable distribution

Extra space for the proof
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Random Walks on Graphs

The rate of convergence

The rate of convergence

Theorem

Let p0 = e(u) for some u 2 V . Then, for every v 2 V ,

|pt(v)� ⇡(v)|  !(G )t ·

s
deg(v)

deg(u)
.
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Random Walks on Graphs

The rate of convergence

Extra space for the proof
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Random Walks on Graphs

Applications to randomness extractors

Seeded extractors

Definition

A distribution X has min entropy k if 8x ,Pr[X = x ]  2�k .

Claim

A distribution with min entropy k is a convex combination of

distributions each is uniform over a set of size at least 2k .
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Random Walks on Graphs

Applications to randomness extractors

Seeded extractors

Definition

The statistical distance (aka total variation distance) between two
distribution X ,Y with support contained in D is given by

SD(X ,Y ) = max
T✓D

|Pr[X 2 T ]� Pr[Y 2 T ]|.

If SD(X ,Y )  " we write X ⇡" Y .
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Random Walks on Graphs

Applications to randomness extractors

Seeded extractors

Claim

SD(X ,Y ) =
1

2
· kX � Y k1 =

X

z2D
|X (z)� Y (z)|.
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Random Walks on Graphs

Applications to randomness extractors

Seeded extractors

Definition

A function Ext : {0, 1}n ⇥ {0, 1}s ! {0, 1}m is a (k , ")-seeded
extractor if for every k-source X , Ext(X ,Y ) ⇡" Um.

Proposition

For every n � k and " there exists a (k , ")-seeded extractor with

s = log(n � k) + 2 log
1

"
+ O(1)

m = k � 2 log
1

"
� O(1).
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Random Walks on Graphs

Applications to randomness extractors

Seeded extractors from random walks

The construction of Ext.

Set s = td . Consider a D = 2d -regular graph G on N = 2n

vertices. On input x 2 {0, 1}n, y 2 {0, 1}s proceed as follows:

1 Interpret the given sample x ⇠ X as a vertex.

2 Take a length-t random walk on G and return the last vertex
on the path.

analysis.

While we can proceed as before, we will take a slightly di↵erent
approach. Write p for the distribution induced by X .



Random Walks on Graphs

Applications to randomness extractors

Seeded extractors from random walks

Claim

It holds that kpt � ⇡k2  2!(G )t · 2�k/2.

Claim

For every x 2 RN
, kxk1 

p
N · kxk2.

Hence,
SD(Ext(X ,Y ),U)  2!(G )t · 2(n�k)/2.

We will later see that there are graphs with !(G ) = O

⇣
1p
D

⌘
.

Thus, s = n � k + 2 log 1
" + O(1).
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Random Walks on Graphs

Applications to randomness extractors

Extra space for the proof

x

i
' In 't ':*

.

↳is

xego.it -- V

Y -

- Eo
,
if

£¥%%" Edt

y=( Yi , Y, ye) Yi C- Said



Random Walks on Graphs

Applications to randomness extractors

Extra space for the proof
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Random Walks on Graphs

Applications to randomness extractors

Extra space for the proof
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Random Walks on Graphs

Applications to randomness extractors

Extra space for the proof
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Random Walks on Graphs

Applications to randomness extractors

Extra space for the proof
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