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Random Walks on Graphs

L Basic definitions

Random walks

Let G = (V, E) be an undirected graph, and p a probability
distribution on V/, thought of as a vector p € RVY.

A random step on G, starting from a probability distribution p, is
the process in which we

Sample v according to p;

Sample a neighbor u of v uniformly at random, and return wu.

If prew is distribution over V after taking a random step, then for

every v € V, O/)@%f@y
_ p(u) 7N
pnew(V) = Z deg( v
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L Basic definitions

Random walks

_ p(u) 7
pneW(V) - ue;(v) deg(u) . {L
Qj (h)

Note that
Prew = Wep = MGDE,‘lp-

A length t random walk is the probabilistic process of taking t
consecutive random steps. The corresponding distributions are
given by

p: = Wp;1 = W2Pt—2 = =Wfpg.
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L Basic definitions

The normalized adjacency matrix

We define to the normalized adjacency matrix of G by  \aJ :/Ll D-‘

—— T+ T™NZO
L= 7 ™N¥Y, ‘ ~1/2 ~1/2
! Ag = DG MGDG .
&= ZIa<e
Note that Ag is symmetric for undirected graph G and that
~1/2 1/2 T —1
Ac = DZ/*W¢DY?. W EDEAD -
Claim

W is an eigenvector of A of eigenvalue w if and only if DY/24) is an
eigenvector of W of eigenvalue w.

= A -t RO
\z\/(D 7V) = (O AD P Lwty,w W

- DAY= oDy
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L Basic definitions

The normalized adjacency matrix

A fact you should know (and prove to yourself!)

Lemma

For n x n matrices A, B,

#aB(x) = dBa(X).

More generally, if A is an n X m matrix and B an m x n matrix
with n > m then

oag(x) = x"""¢Ba(x).

In particular, the spectrum remains the same (and the kernel
increase when n # m).
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L Basic definitions

The normalized adjacency matrix

We denote the eigenvalues of W by w; > wp > -+ - > w,. Note
that the degree vector d is an eigenvector of W of eigenvalue

w1 = 1. Indeed, dw)- Jgj W
Wd = (MD 1)d = M(D"1d) = M1 =d.

\
Define Tz
Vd d D d-ld
¢1 g = .
V]| 17d
Thus, 1)1 is an eigenvector of A of eigenvalue 1. The
Perron-Frobenius Theorem implies that /‘1 > A,
Spec(W) = Spec(A) C [-1,1]. //?
/’m
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LThe stable distribution

The stable distribution

We denote w(G) = max(w2, —wp). By Perron-Frobenius, G is
connected and not bipartite if and only if w(G) < 1.

Theorem

Assume that G is connected and not bipartite. Then, a random
walk from any initial distribution converges to the stable

distribution ;

o’
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LThe stable distribution

Extra space for the proof

4
W, = U

A: ic‘)“\/i“ﬁr - 4'“Hff+jur%%T
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W= DD Z w DR D
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L The rate of convergence

The rate of convergence

Theorem

Let po = e(u) for some u € V. Then, for every v € V,

) = w()] < (6 - S5
A - L
W = DLAO -
wh= pia‘p*

\_—

whew) - 1+ Zw D“i“\’ D et
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L The rate of convergence

Extra space for the proof

g A € T \'L T '\'L
e(v) Wée(u) = JC(+t ZQ):@@)D kﬁtr D e
I =2
ﬁ'(\,) Orvor @7

P -] < Z et O i B aa,,/
Y/ A 6 W“ ’ L le(w ¥, ‘fe(w)
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LApplications to randomness extractors

Seeded extractors

Definition
A distribution X has min entropy k if Vx, Pr[X = x] < 27k,

Claim

A distribution with min entropy k is a convex combination of
distributions each is uniform over a set of size at least 2k .

7:*‘? L PR Flit it

k—/?v

FIx=A
: T _\Z,\lz.v.‘

spr 5/
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LApplications to randomness extractors

Seeded extractors

The statistical distance (aka total variation distance) between two
distribution X, Y with support contained in D is given by

SD(X,Y) = 7rpcaz<)\ Pr[X € T] —Pr[Y € T]|.

If SD(X,Y) < e we write X =. Y.

-
B;EJ}N%
Ol¥o | XX (|©O
P .
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LApplications to randomness extractors

Seeded extractors

e

SD(X. Y) = 3+ [X — YL = 3 1X(2) - V(@)
zeD
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LApplications to randomness extractors

Seeded extractors

Definition
A function Ext : {0,1}" x #0,1}* — {0,1}™ is a (k, ¢)-seeded
extractor if for every k-source X, Ext(X,Y) ~. Up,.

g(ny}

Proposition

For every n > k and ¢ there exists a (k, e)-seeded extractor with
Ry

s = log(n :_?r+2|og% + 0(1)

1
m=k —2log = — O(1). M=
€
s
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LApplications to randomness extractors

Seeded extractors from random walks

The construction of Ext.

Set s = td. Consider a D = 29-regular graph G on N = 2"

vertices. On input x € {0,1}", y € {0,1}* proceed as follows:
Interpret the given sample x ~ X as a vertex.

Take a length-t random walk on G and return the last vertex
on the path.
analysis.

While we can proceed as before, we will take a slightly different
approach. Write p for the distribution induced by X.
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LApplications to randomness extractors

Seeded extractors from random walks

_—/

> Foreveryx e < VN - ||x]|2.
2
Hence, i
SD(Ext(X, Y), U) <2w(G)t -2 h/2 & &
—_— -
We will later see that there are graphs with w(G) = O (%)
Thus, s = n— k +2log 1 + O(1). D&/L ok |
= > 2 —
s> N— k+ L’c:j-J,O(/) th/Zé, ;/x ; B
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LApplications to randomness extractors

Extra space for the proof
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LApplications to randomness extractors

Extra space for the proof
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