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Problem 4.1 Let S ∈ GL2(Z), S has all non negative entries, det(S) = 1, S 6= ST . Define the graph G
on the vertices V = Z2 \ {(0, 0)}, where the vertex (x, y) is connected to

S(x, y), ST (x, y), S−1(x, y), (ST )−1(x, y).

Prove that for every finite A ⊂ V it holds that |E(A,A)|
|A| ≥ 1.

Problem 4.2 Prove the following generalization of Cheeger’s inequality. For every d-regular graph G =
(V,E) with a countably infinite set of vertices we have

inf
A:|A|<∞

|E(A,A)|
|A|

≤
√

2 · d · λ1(G).

Hint: Given a function f : V → R, consider the family of subsets St := {v ∈ V | f2(V ) > t} and use
integration (w.r.t t) to deduce the desired inequality.

Problem 3.3 In this question you will prove that Cayley graphs coming from Abelian groups cannot yield
good expanders. Quantitatively, to achieve constant spectral gap the degree must be at least logarithmic in
the number of vertices. Formally, let Γ be an abelian group of size n and S ⊆ Γ closed to inverses (namely,
s ∈ S =⇒ −s ∈ S). Let G = G(Γ, S) be the corresponding Cayley graph. Prove that if γ(G) ≥ c for some
constant c > 0 then |S| = Ω(log n).

Problem 3.4 Let G = (V,E) be a (1 − ω) spectral expander. Let f : V → {0, 1} and denote by
µ = |Ev∼V [(−1)f(v)]| (that is, µ is the bias of the labelling given by f). Define a distribution Ut by sampling
t vertices v1, . . . , vt uniformly and independently at random. It is straightforward to prove that the bias of
the parity of the corresponding bits decreases exponentially with t, that is,∣∣∣E(v1,...,vt)∼Ut

[
(−1)f(v1)+···+f(vt)

]∣∣∣ = µt.

In this question, you will prove that an expander random walk has almost the same effect. Formally, let
RWt be the distribution defined by random walks, (v1, v2, . . . , vt), in G, (that is, v1 is sampled uniformly at
random from V , and for i > 1, vi is sampled uniformly at random from the neighbors of vi−1).

Prove that ∣∣∣E(v1,...,vt)∼RWt

[
(−1)f(v1)+···+f(vt)

]∣∣∣ ≤ (O(µ2 + ω))t/4.

Problem 3.5 In the lectures, we devised an error reduction technique using expander random walks.
Roughly we presented a technique that given an algorithm A with error probability ≤ c, running time t and
randomness complexity r, outputs an algorithm Ã, solving the same problem, with error probability ≤ ε,
running time O(log 1

ε · t) and randomness O(r + log 1
ε ).

Devise another error reduction technique, which will have no cost in randomness complexity though a poly( 1
ε )

multiplicative cost in time complexity. Moreover, your error reduction technique should work for two-sided
error randomized algorithms.

Guidance: instead of taking a random walk, sample a vertex at random and consider its neighbors.
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