The Krull Dimension of a Ring

Introduction to Algebraic-Geometric Codes. Fall 2019

April 30, 2019

Definition

Let A be a ring. The set of all prime ideals in A is denoted by Spec(A).

Remark

- $\langle 1 \rangle = A \notin \operatorname{Spec}(A)$.
- $\langle 0 \rangle \in \operatorname{Spec}(A) \iff A \text{ is a domain.}$

Definition

Let A be a ring. A sequence $P_n \subset \cdots \subset P_1 \subset P_0$ of distinct prime ideals in A is called a chain of prime ideals of length n.

Definition

Let A be a ring and $P \in \operatorname{Spec}(A)$. The height of P, denoted by $\operatorname{ht}(P)$ is the supremum of lengths of chains of prime ideals in A ending with $P_0 = P$.

Definition

Let A be a ring. The Krull dimension of A is defined by

$$\dim(A) = \sup\{\operatorname{ht}(P) \mid P \in \operatorname{Spec}(A)\}.$$

Example

- Any field has dimension 0. Indeed, Spec(field) = $\{\langle 0 \rangle\}$.
- A domain of dimension 0 is a field.
- Let k be a field. $k[x]/\langle x^2 \rangle$ is a non-domain with dimension 0.
- $\dim(\mathbb{Z}) = 1$. For ≥ 1 consider $\langle 0 \rangle \subset \langle 2 \rangle$.
- Let k be a field. Then, $\dim(k[x]) = 1$. For ≥ 1 consider $\langle 0 \rangle \subset \langle x \rangle$.
- More generally, one can prove that $\dim(k[x_1,\ldots,x_n])=n$.
- We will now prove that a PID which is not a field has dimension 1.
- $\dim(\mathbb{Z}[x]) = 2$. The \geq follows by $\langle 0 \rangle \subset \langle 2 \rangle \subset \langle 2, x \rangle$.

Remark

Let A be a domain. Then, $\dim(A) = 1 \iff$ every nonzero prime ideal is $\max \operatorname{imal} + \operatorname{Spec}(A) \neq \{\langle 0 \rangle\}.$

Every PID that is not a field has dimension 1.

The proof readily follows by the following claim that is left as an exercise.

Claim

Let A be a domain, $P = \langle p \rangle$, $Q = \langle q \rangle$ be two distinct, nontrivial, prime ideals. Then, $P \not\subset Q$.

Two neat propositions that we will not need but good to know.

Proposition

Let R be a domain. Then,

R is a UFD ← every height 1 prime ideal is principal

Proposition

Noetherian + Dimension $1 + UFD \iff PID$.

Proposition (Main result of this unit)

Let B/A be an integral extension. Assume B is a domain. Then,

$$dim(A) = 1 \implies dim(B) = 1.$$

This type of result holds for higher dimensions. For instance (without a proof):

Theorem

Let B/A be an integral extension. Assume A, B are noetherian domains. Then, dim(B) = dim(A).

Let B/A be a ring extension. Assume B is a domain. Let $P_B \in \operatorname{Spec}(B)$. Define $P_A = P_B \cap A$. Then, $P_A \in \operatorname{Spec}(A)$.

Proof.

Observe that $A/P_A \hookrightarrow B/P_B$ via $a+P_A \mapsto a+P_B$. Thus, A/P_A is a domain and so $P_A \in \operatorname{Spec}(A)$.

Let B/A be an integral extension. Assume B is a domain. Let $P_B \in \operatorname{Spec}(B) \setminus \{\langle 0 \rangle\}$. Then, $P_A = P_B \cap A \in \operatorname{Spec}(A) \setminus \{\langle 0 \rangle\}$.

Proof.

Take $0 \neq \alpha \in P_B$. As α integral over A,

$$\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 = 0,$$

where $a_i \in A$. Since B is a domain, we may assume $a_0 \neq 0$. We see that $a_0 \in P_A$.

Corollary

Let B/A be an integral extension. Assume B is a domain and that $\dim(A) = 1$. Let $\langle 0 \rangle \neq P_B \in \operatorname{Spec}(B)$ and define $P_A = P_B \cap A$. Then, $P_A \in \operatorname{Max}(A)$.

Proof.

We proved that $P_A \in \operatorname{Spec}(A) \setminus \{\langle 0 \rangle\}$. So, $\operatorname{ht}(P_A) \geq 1$. But $\dim(A) = 1$ and so $\operatorname{ht}(P_A) = 1$. Hence, $P_A \in \operatorname{Max}(A)$.

Let B/A be an integral extension. Assume B is a domain and that $\dim(A) = 1$. Let $\langle 0 \rangle \neq P_B \in \operatorname{Spec}(B)$ and define $P_A = P_B \cap A$. Then, $P_B \in \operatorname{Max}(B)$.

Proof.

Observe that B/P_B is a domain that contains an isomorphic copy of the field A/P_A via $a+P_A\mapsto a+P_B$. Take $\beta+P_B\in B/P_B$ with $\beta\in B\setminus P_B$. Then, $\exists a_i\in A$ s.t. in B

$$\beta^n + a_{n-1}\beta^{n-1} + \dots + a_0 = 0$$

Thus, in B/P_B ,

$$(\beta + P_B)^n + (a_{n-1} + P_B)(\beta + P_B)^{n-1} + \dots + (a_0 + P_B) = 0.$$

Proof.

$$(\beta + P_B)^n + (a_{n-1} + P_B)(\beta + P_B)^{n-1} + \dots + (a_0 + P_B) = 0.$$

Using that B/P_B is a domain, we may assume $a_0 + P_B \neq 0$. Thus,

$$(\beta + P_B) \cdot (\gamma + P_B) = a_0 + P_B.$$

Since A/P_A is a field, $a_0 + P_B$ is a unit of B/P_B and so $\beta + P_B$ is invertible in B/P_B .

Recall the proposition we were set to prove.

Proposition

Let B/A be an integral extension. Assume B is a domain. Then,

$$\dim(A) = 1 \implies \dim(B) = 1.$$

Proof.

We need to show that every $\langle 0 \rangle \neq P_B \in \operatorname{Spec}(B)$ is maximal, which is exactly what we proved.

We are not yet ready to prove the following claims - we will need the notion of localization from commutative algebra, but these are good to have in mind. We'll prove them in the recitations / assignments.

Claim

Let A be a domain of dimension 1. Then A[y] has dimension 2 or 3. Moreover, if A is a PID then dim(A[y]) = 2.

Claim (very important for us)

Let K be a field. Let $f \in K[x,y]$ irreducible. Then, $K[x,y]/\langle f \rangle$ has dimension 1.