Small Bias Sets Not based on any particular source

Gil Cohen

December 21, 2020

Overview

- 1 Pseudorandom generators
- 2 Small bias sets
- **3** Explicit construction of size $O(n^2/\varepsilon^2)$
- 4 Explicit construction of size $O(n/\varepsilon^8)$

Pseudorandom generators

Let C be a class of functions of the form $f:\{0,1\}^* \to \{0,1\}$. We partition $C=\cup_n C_n$ according to the input length.

Definition

A family of functions $\mathbf{G}_n: \{0,1\}^s \to \{0,1\}^n$ is an ε pseudorandom generator for C if for every n and $f \in C_n$,

$$\left|\mathbb{E}[f(\mathbf{G}_n(U_s))] - \mathbb{E}[f(U_n)]\right| \leq \varepsilon.$$

The parameter $s = s(n, \varepsilon)$ is called the seed length.

Pseudorandom generators

A fundamental question in complexity theory is to construct PRG for natural classes with short seed.

For example, PRG with logarithmic seed length for the class of polynomial-time computable functions implies $\mathbf{BPP} = \mathbf{P}$.

Proposition

Every class $C = \{C_n\}_{n \in \mathbb{N}}$ has a PRG with seed length $s = \log_2 \log |C_n| + 2 \log \frac{1}{\varepsilon} + O(1)$.

Small bias sets

Recall that an \mathbb{F}_2 linear function is a function of the form $f(x_1,\ldots,x_n)=\sum_{i\in S}x_i$ for some $S\subseteq [n]$, where the sum is taken over \mathbb{F}_2 .

Proposition

For every n, ε there exists an ε -PRG for the class of \mathbb{F}_2 linear functions with seed length $s = \log_2 n + 2 \log_2 \frac{1}{\varepsilon} + O(1)$.

Overview

- 1 Pseudorandom generators
- 2 Small bias sets
- **3** Explicit construction of size $O(n^2/\varepsilon^2)$
- 4 Explicit construction of size $O(n/\varepsilon^8)$

Small bias sets

Definition

Let **G** be an ε -PRG for the class of \mathbb{F}_2 linear functions. The distribution $\mathbf{G}(U_s)$ is called an ε -biased set. Hence, there exist ε -biased sets of size $O(n/\varepsilon^2)$.

It is a basic open problem in pseudorandomness to find explicit constructions of small-bias sets with such parameters. Known constructions have size:

Small bias sets

- Naor-Naor (1990) $n/\varepsilon^{O(1)}$
- Alon-Goldreich-Hastad-Peralta (1990) n^2/ε^2
- Easy from AGHP $n \log^2 n/\varepsilon^3$
- Alon-Bruck-Naor-Naor-Roth (1992) / AGHP + Algebraic-Geometric codes gives n/ε^3
- Ben-Aroya Ta-Shma (2009) $(n/\varepsilon^2)^{5/4}$
- Ta-Shma (2017) $n/\varepsilon^{2+o(1)}$

Small bias sets and Cayley graphs

Proposition

 $S \subseteq \mathbb{F}_2^n$ is ε -biased \implies Cay (\mathbb{F}_2^n, S) is a $(1 - \varepsilon)$ -spectral expander.

Overview

- 1 Pseudorandom generators
- 2 Small bias sets
- **3** Explicit construction of size $O(n^2/\varepsilon^2)$
- 4 Explicit construction of size $O(n/\varepsilon^8)$

Explicit constructions

For $x, y \in \mathbb{F}_2^m \simeq \mathbb{F}_{2^m}$ define $s_{x,y} \in \mathbb{F}_2^n$ as follows: for every $0 \le i < n$, $(s_{x,y})_i = x^i y$.

Proposition

The set $S = \{s_{x,y} \mid x, y \in \mathbb{F}_2^m\}$ is $n/2^m$ -biased.

Corollary

There exists an explicit ε -biased set in $\{0,1\}^n$ of size $O(n^2/\varepsilon^2)$.

Extra space for the proof

Binary codes

Definition

A function $C: \{0,1\}^n \to \{0,1\}^m$ is a code with distance δ if for every distinct $x,y \in \{0,1\}^n$ it holds that $|C(x) - C(y)| \ge \delta m$.

Definition

A code C is linear if it is an \mathbb{F}_2 -linear function.

Binary codes and small bias sets

Proposition

A binary code $C:\{0,1\}^n \to \{0,1\}^m$ with distance δ induces an $\varepsilon=\frac{1-\delta}{1+\delta}$ biased set in $\{0,1\}^n$ of size m.

Explicit construction of size $O(n/\varepsilon^8)$

Due to lack of time, we will assume we have explicit binary codes with constant distance δ and m = O(n).

In the problem set you proved the following.

Theorem

Let G = (V, E) be a $1 - \omega$ spectral expander on n vertices. Let $f : V \to \{0,1\}$ be a labelling with bias μ . Then,

$$|\mathbb{E}_{v_1,\ldots,v_t}[(-1)^{f(v_1)+\cdots+f(v_t)}]| \leq (O(\mu^2+\omega))^{t/4},$$

where v_1, \ldots, v_t is a random walk on G.

(In fact a stronger statement holds in which the exponent is t/2.)

Explicit construction of size $O(n/\varepsilon^8)$

We now describe an explicit construction of an ε -biased set of size $O(n/\varepsilon^8)$.

Extra space for the proof