
Spectral Theory for Real Symmetric Matrices

Spectral Theory for Real Symmetric Matrices

Gil Cohen

November 2, 2020



Spectral Theory for Real Symmetric Matrices

Overview

1 The spectral theorem

2 Trace, determinant and eigenvalues

3 Cospectral graphs

4 Spectral properties of a graph

5 The Fiedler value

6 Example - the spectrum of the cycle graph

7 The Courant-Fischer Theorem

8 Eigenvectors from eigenvalues



Spectral Theory for Real Symmetric Matrices

The spectral theorem

Eigenvalues

Recall that a nonzero vector ψ is an eigenvector of a matrix M
with eigenvalue λ if

Mψ = λψ.

Equivalently,

λI −M is singular;

λ is a root of the characteristic polynomial of M,
det(xI −M).

Quick important corollaries:

M has n eigenvalues in C, counted with multiplicities.

The product of eigenvalues
∏

i λi = detM.
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The Spectral Theorem

Theorem (The Spectral Theorem)

Let M be an n × n real, symmetric matrix. Then there exist
λ1, . . . , λn ∈ R (not necessarily distinct) and n mutually
orthogonal unit vectors ψ1, . . . ,ψn such that ψi is an eigenvector
of M of eigenvalue λi .

We will prove the theorem via a sequence of claims.
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The Spectral Theorem - Proof

Claim

Let M be an n × n real, symmetric matrix. If ψ1,ψ2 are
eigenvectors with different eigenvalues then ψT

1 ψ2 = 0.

Proof
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Claim

The eigenvalues of a real, symmetric matrix are real.

Proof
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The Spectral Theorem - Proof

Definition

Let M be a real, symmetric n × n matrix. A subspace U ⊆ Rn is
M-invariant if Mu ∈ U for all u ∈ U.

Take, for example, U the span of some eigenvectors.

Claim

Let M be a real, symmetric n× n matrix. If U is M-invariant, so is
U⊥.

Proof
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The spectral theorem

The Spectral Theorem - Proof

Claim

Let M be a real, symmetric n × n matrix. If ∅ 6= U is M-invariant
then U contains a real eigenvector of M.

Proof
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We are now in a position to prove the spectral theorem.

Theorem (The Spectral Theorem; recall)

Let M be an n × n real, symmetric matrix. Then there exist
λ1, . . . , λn ∈ R (not necessarily distinct) and n mutually
orthogonal unit vectors ψ1, . . . ,ψn such that ψi is an eigenvector
of M of eigenvalue λi .

Proof
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The spectral theorem

Spectral Decomposition

Corollary (Spectral decomposition)

Let M be a real, symmetric n × n matrix with eigenvalues
λ1, . . . , λn and corresponding orthonormal eigenvectors
ψ1, . . . ,ψn. Then,

M = UΣUT =
n∑

i=1

λiψiψ
T
i

where U = (ψ1, . . . ,ψn) and Σ = diag(λ1, . . . , λn).
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Thinking of M as an operator, take x ∈ Rn and write x =
∑

i ciψi

where
∑

i c
2
i = ‖x‖22. We have that

Mx =
∑
i

ciMψi =
∑
i

λiciψi .
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The spectral decomposition is useful for taking powers

M = UΣUT =
n∑

i=1

λiψiψ
T
i

M2 = UΣ2UT =
n∑

i=1

λ2i ψiψ
T
i

If λi 6= 0 for all i , then

M−1 = UΣ−1UT =
n∑

i=1

1

λi
ψiψ

T
i

If M is singular, we can still define the pseudo-inverse (aka the
Moore–Penrose inverse) by

M† =
∑
i :λi 6=0

1

λi
ψiψ

T
i .
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Positive (semi)definite matrices

Definition

A real symmetric matrix M is positive semidefinite (PSD) if all its
eigenvalues are non-negative. It is positive definite (PD) if its
eigenvalues are strictly positive.

For a PSD M,

M = UΣUT =
n∑

i=1

λiψiψ
T
i

√
M = U

√
ΣUT =

n∑
i=1

√
λiψiψ

T
i
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Trace, determinant and eigenvalues

Trace is the sum of eigenvalues

We wish to prove the following corollary.

Corollary

Let M be an n × n real, symmetric matrix with eigenvalues
λ1, . . . , λn. Then,

Tr(M) =
n∑

i=1

λi .

To prove the corollary we start by recalling properties of the
determinant.
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The determinant

The most basic nontrivial fact about the determinant is that it is
multiplicative. That is,

det(MN) = det(M) det(N)

From this we can infer

Theorem (The Weinstein-Aronszajn Determinant Identity)

Let M be an n ×m matrix, and N an m × n matrix. Then,

det(I + MN) = det(I + NM).

Hint: consider A =

(
I −M
N I

)
, B =

(
I M
0 I

)
.
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The determinant

A key observation is that near the identity, the determinant
behaves like the trace. Formally,

det(I + εM) = 1 + εTr(M) + O(ε2)

Proof
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Corollary (The cyclic property of the trace function)

Let M be an n ×m matrix, and N an m × n matrix. Then,

Tr(MN) = Tr(NM).

Proof
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Trace, determinant and eigenvalues

Trace is the sum of eigenvalues

We are now in a position to prove

Corollary

Let M be an n × n real, symmetric matrix with eigenvalues
λ1, . . . , λn. Then,

Tr(M) =
n∑
i

λi .

Proof
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Cospectral graphs

Graphs G ,H with the same sequence of eigenvalues of their
respective MG ,MH are called cospectral. Note that isomorphic
graphs are cospectral. Indeed, given a permutation π on V denote

Π(u, v) =

{
1 if π(u) = v

0 otherwise

Observe that Πe(u) = e(π−1(u)) and so Mπ(G) = ΠTMGΠ.
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Cospectral graphs

As Mπ(G) = ΠTMGΠ, if µ an eigenvalue of MG with eigenvector
ψ then

Mπ(G)(Π
Tψ) = (ΠTMGΠ)(ΠTψ)

= ΠTMG (ΠΠT )ψ

= ΠTMGψ

= µ(ΠTψ).

Thus, µ is an eigenvalue of Mπ(G) (note ΠTψ 6= 0).
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Cospectral graphs

Cospectral graphs are not necessarily isomorphic.

The adjacency matrices of both graphs have the same
characteristic polynomial

(x + 2)(x + 1)2(x − 1)2(x2 − 2x − 6)
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Spectral properties of a graph

We say that a property of a graph is a spectral property if it is
determined by its eigenvalues (its spectrum).

Say G is a graph with e edges. As Tr(MG ) =
∑

i λi ,∑
i

λ2i = Tr(M2
G ) = 2e.

Hence, the number of edges is a spectral property.

Question

What about the number of triangles? 4-cycles? Planarity?
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The Fiedler value

The Laplacian of a graph is PSD. We will always sort the
eigenvalues of the Laplacian from smallest to largest

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Lemma

G is connected if and only if λ2 > 0.

Proof

λ2 is called the Fiedler value. Later in the course we will prove a
quantitative result known as Cheeger’s inequality.
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The Fiedler value

Fiedler’s abstract
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Example - the spectrum of the cycle graph

The spectrum of the cycle graph

Lemma

Let G be the cycle graph on V = [n]. Let ω ∈ C be an nth root of
unity. Then, for every i ∈ [n],

λi = ωi + ω−i

is an eigenvalue of MG with eigenvector ψi with j th entry
(ψi )j = ωi+j .
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The Rayleigh quotient

Definition (The Rayleigh quotient)

The Rayleigh quotient of a vector x with respect to a matrix M is
defined by

xTMx

xTx
.

Question

What is the Rayleigh quotient of an eigenvector of M?



Spectral Theory for Real Symmetric Matrices

The Courant-Fischer Theorem

The Rayleigh quotient

Question

What is the largest value that the Rayleigh quotient can attain?
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The Courant-Fischer Theorem

The Rayleigh quotient

Question

Express µ2 as a Rayleigh quotient.
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The Courant-Fischer Theorem

Theorem (The Courant-Fischer Theorem)

Let M be a symmetric matrix with eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn. Then,

µk = max
S⊆Rn

dimS=k

min
x∈S
x6=0

xTMx

xTx

= min
T⊆Rn

dimT=n−k+1

max
x∈T
x 6=0

xTMx

xTx
.
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The Courant-Fischer Theorem

µ2 as the min of max

Want to show that µ2 = min T⊆Rn

dimT=n−1
maxx∈T

x6=0

xTMx
xT x

.
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Eigenvectors from eigenvalues

Theorem

Let M be a symmetric matrix with eigenvalues λ1, . . . , λn and
corresponding real eigenvectors ψ1, . . . ,ψn. Then,

(ψi )
2
j ·

n∏
k=1
k 6=i

(λi (M)− λk(M)) =
n−1∏
k=1

(λi (M)− λk(Mj)),

where Mj is the matrix formed by deleting the j th column and row
from M.

See https://terrytao.wordpress.com/2019/08/13/

eigenvectors-from-eigenvalues/ for more information.

https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/
https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/
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