Spectral Theory for Real Symmetric Matrices

Spectral Theory for Real Symmetric Matrices

Gil Cohen

November 2, 2020



Spectral Theory for Real Symmetric Matrices

Overview

The spectral theorem

]

Trace, determinant and eigenvalues

]

Cospectral graphs

[~

Spectral properties of a graph

The Fiedler value

&

Example - the spectrum of the cycle graph

~ o

The Courant-Fischer Theorem

Eigenvectors from eigenvalues



Spectral Theory for Real Symmetric Matrices

LThe spectral theorem

Eigenvalues

Recall that a nonzero vector 1) is an eigenvector of a matrix M
with eigenvalue A if
M) = .
Equivalently,
m A\Z — M is singular;

m ) is a root of the characteristic polynomial of M,
det(xZ — M).

Quick important corollaries:
m M has n eigenvalues in C, counted with multiplicities.
m The product of eigenvalues [[; \j = det M.
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The Spectral Theorem

Theorem (The Spectral Theorem)

Let M be an n x n real, symmetric matrix. Then there exist

AL,y ...y An € R (not necessarily distinct) and n mutually
orthogonal unit vectors 11, . .., 1), such that ); is an eigenvector
of M of eigenvalue \;.

We will prove the theorem via a sequence of claims.
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The Spectral Theorem - Proof

Let M be an n x n real, symmetric matrix. If 11,2 are
eigenvectors with different eigenvalues then 1] 1 = 0.

Proof
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The eigenvalues of a real, symmetric matrix are real.

Proof
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The Spectral Theorem - Proof

Definition

Let M be a real, symmetric n X n matrix. A subspace U C R" is
M-invariant if Mu € U for all u € U.

Take, for example, U the span of some eigenvectors.

Claim

Let M be a real, symmetric n X n matrix. If U is M-invariant, so is
U-+.

Proof
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The Spectral Theorem - Proof

Let M be a real, symmetric n x n matrix. If ) # U is M-invariant
then U contains a real eigenvector of M.

Proof
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We are now in a position to prove the spectral theorem.

Theorem (The Spectral Theorem; recall)

Let M be an n x n real, symmetric matrix. Then there exist

A,y ...y An € R (not necessarily distinct) and n mutually
orthogonal unit vectors 1, ..., 1, such that 1; is an eigenvector
of M of eigenvalue );.

Proof
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Spectral Decomposition

Corollary (Spectral decomposition)

Let M be a real, symmetric n X n matrix with eigenvalues
A1, ..., A and corresponding orthonormal eigenvectors

P1,..., P, Then,
n

M=UZU" =) Ny
i=1

where U = (v1,...,%,) and X = diag(A1, ..., An).
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Thinking of M as an operator, take x € R" and write x = > _; ¢j?;
where Y, c? = ||x||3. We have that

Mx = Z C,'M'l,b,' = Z /\,‘C,‘d),‘.
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The spectral decomposition is useful for taking powers
M=UxU = ix,w,w
M2 =Uux?uT = ZA% s
If A\; # 0 for all i, then
Ml=uxtUT = Z 1,[) P

If M is singular, we can still define the pseudo-inverse (aka the
Moore—Penrose inverse) by

M= S Lo

ix£0 "
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Positive (semi)definite matrices

Definition

A real symmetric matrix M is positive semidefinite (PSD) if all its
eigenvalues are non-negative. It is positive definite (PD) if its
eigenvalues are strictly positive.

For a PSD M,

M=UxUT = ZA¢¢

VM =uUvzUT = Z\Fmb,
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Trace is the sum of eigenvalues

We wish to prove the following corollary.

Corollary

Let M be an n X n real, symmetric matrix with eigenvalues
Al,...,An. Then,

TI’(M) = i )\,’.
i=1

To prove the corollary we start by recalling properties of the
determinant.
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The determinant

The most basic nontrivial fact about the determinant is that it is
multiplicative. That is,

det(MN) = det(M) det(N)

From this we can infer

Theorem (The Weinstein-Aronszajn Determinant ldentity)

Let M be an n x m matrix, and N an m x n matrix. Then,

det(Z + MN) = det(Z + NM).

- ) (T —M (T M
Hint: con5|derA—(N I)’B_(O I)'
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The determinant

A key observation is that near the identity, the determinant
behaves like the trace. Formally,

det(Z + M) = 1 + Tr(M) + O(c?)

Proof



Spectral Theory for Real Symmetric Matrices

LTrace, determinant and eigenvalues

Corollary (The cyclic property of the trace functi

Let M be an n X m matrix, and N an m x n matrix. Then,

Tr(MN) = Tr(NM).

Proof
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Trace is the sum of eigenvalues

We are now in a position to prove

Corollary

Let M be an n X n real, symmetric matrix with eigenvalues
Al,...,An. Then,

Tr(M) = zn:)\,-.

Proof
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Cospectral graphs

Graphs G, H with the same sequence of eigenvalues of their
respective M, My are called cospectral. Note that isomorphic
graphs are cospectral. Indeed, given a permutation 7w on V denote

T(u,v) = {1 if m(u) =v

0 otherwise

Observe that Ile(u) = e(7*(u)) and so M (g) = II" MGIL
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Cospectral graphs

As Mgy = IT" MGIL, if 11 an eigenvalue of Mg with eigenvector
1) then
Mz (6)(T1" ) = (IT" MGIIT)(IT" )
=TI Mg(IIII " )
=TI Mgy
= p(I17 ).

Thus, p is an eigenvalue of M) (note I #0).
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Cospectral graphs

Cospectral graphs are not necessarily isomorphic.

o

The adjacency matrices of both graphs have the same
characteristic polynomial

(x 4+ 2)(x + 1)(x — 1)?(x*> — 2x — 6)
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Spectral properties of a graph

We say that a property of a graph is a spectral property if it is
determined by its eigenvalues (its spectrum).

Say G is a graph with e edges. As Tr(Mg) =>_; \i,

Z)\z Tr( M2 = 2e.

Hence, the number of edges is a spectral property.

Question

What about the number of triangles? 4-cycles? Planarity?
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The Fiedler value

The Laplacian of a graph is PSD. We will always sort the
eigenvalues of the Laplacian from smallest to largest

0= <A< <A,

Lemma

G is connected if and only if Ay > 0.

Proof

Ao is called the Fiedler value. Later in the course we will prove a
quantitative result known as Cheeger's inequality.
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Fiedler's abstract

ALGEBRAIC CONNECTIVITY OF GRAPHS®)

MiRosLav Fieuir, Praha

(Received April 14, 1972)

1. INTRODUCTION

Let G = (V, E) be a non-directed finite graph without loops and multiple edges.
Having chosen a fixed ordering wy, wy, ..., w, of the set ¥, we can form a square
n-rowed matrix A(G) whose off-diagonal entries are ay = ay = — 1 if (w, w) € E
and a,, = 0 otherwise and whose diagonal entries a;, are equal to the valencies of
the vertices w,. This matrix A(G), which is frequently used to enumerate the spanning
trees of the graph G, is symmetric, singular (all the row sums are zero) and positive
semidefinite (A4(G) JUT where U is the (0, 1, —1) vertex-edge adjacency matrix
of arbitrarily directed graph G). Let n 22 and 0 = 4, < 4, = a(G) £
, be the cigenvalues of the matrix A(G). From the Perron-Frobenius meerem
applied to the matrix (n — 1) — A(G) it follows that a(G) is zero if and only if the
graph G is not connected. We shall call the second smallest eigenvalue a(G) of the
matrix A(G) algebraic connectivity of the graph G. It is the purpose of this paper to
find its relation to the usual vertex and edge connectivities.

We recall that many authors, e.g. A. J. HOFFMAN, M. Doos, D. K. RAY-CHAUD-
wuRy, J. J. SEDEL have characterized graphs by means of the spectra of the (0, 1)
and (0, 1, —1) adjacency matrices.

Remark. After having finished this paper the author was informed that W. N.
ANDERSON, Jr. and T. D. MORLEY had obtained some of these results in the paper
Eigenvalues of the Laplacian of a graph, University of Maryland Technical Report
‘TR-71-45, October 6, 1971.
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The spectrum of the cycle graph

Lemma

Let G be the cycle graph on V = [n]. Let w € C be an n'" root of
unity. Then, for every i € [n],

A= wi —|—w_i

is an eigenvalue of M¢ with eigenvector 1; with j entry

(¥i); = w'.
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The Rayleigh quotient

Definition (The Rayleigh quotient)

The Rayleigh quotient of a vector x with respect to a matrix M is
defined by
x " Mx

X
-
b

Question

What is the Rayleigh quotient of an eigenvector of M?
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The Rayleigh quotient

What is the largest value that the Rayleigh quotient can attain?
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The Rayleigh quotient

Express j1» as a Rayleigh quotient.
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The Courant-Fischer Theorem

Theorem (The Courant-Fischer Theorem)

Let M be a symmetric matrix with eigenvalues
M1 2> p2 > -+ = pin. Then,

_ xTMx
Kk = max min
H SCR” xeS xTx
dim S=k x#0

. x T Mx
= min max

TCR"  xeT x'x
dim T=n—k+1 x#0
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{12 as the min of max

. T
Want to show that pio = min  7cgn maxxeT%.
dim T=n—-1 x#0
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Eigenvectors from eigenvalues

Theorem
Let M be a symmetric matrix with eigenvalues A1, ..., A\, and
corresponding real eigenvectors 11, . ..,1,. Then,
n n—1
(%07 - TT v(M) = (M) = TT (i(M) = Ae(My)),
l}((;l k=1

where M is the matrix formed by deleting the jt column and row
from M.

See https://terrytao.wordpress.com/2019/08/13/
eigenvectors-from-eigenvalues/ for more information.
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