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Discussion

Let X/K be a nonsingular complete curve with function field
K (X )/K. Let P1, . . . ,Ps be a set of points on X . We will be
interested in questions such as

Is it possible to find a nonconstant function α ∈ K (X ) that
has no poles outside this set? Yes.

Given a ∈ N is there a function α ∈ K (X ) that has pole order
precisely a at P (vP(α) = −a) and no other poles? True for a
“large enough” a.

How many zeros and poles a given function α ∈ K (X ) \ K
has? Same number - [K (X ) : K (α)]!
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Example

Let K be algebraically closed. Let P1/K be the projective line with
field of functions K (x). Recall that we can identify P1 with
K ∪ {∞} in such a way that K [x ] is the ring of functions defined
everywhere on K .

Let α1, . . . , αs ∈ K and a∞, a1, . . . , as ∈ N. Take any
β /∈ {α1, . . . , αs} and set b = a∞ + a1 + · · ·+ as . Then the
function

(x − β)b

(x − α1)a1 · · · (x − αs)as
∈ K (x)

has

pole order a∞ at ∞.

pole order ai at αi for i = 1, . . . , s.

no other poles.
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The following proposition that we will prove in the next course
asserts that every nonzero function in L has a finite number of
poles and zeros.

Proposition

Let L/K be a function field. Then, for every α ∈ L×

| {v ∈ V(L/K ) | v(α) 6= 0} | <∞.
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Definition

Let X/K be a nonsingular complete curve with function field L/K .
The group of divisors of L/K is the free abelian group generated
by {xv | v ∈ V(L/K )}. That is,

Div(L/K ) =
⊕

v∈V(L/K)

Zxv .

Identifying V(L/K ) with X as usual, we can write Div(L/K ) as

Div(X ) =
⊕
P∈X

ZP.

An element D ∈ Div(X ) is called a divisor of L. D =
∑

P aPP
where aP = 0 except for finitely many P ∈ X .
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Definition

An element in L (namely, a function) is naturally mapped to a
divisor. Given α ∈ L we define the divisor

(α) =
∑
P∈X

vP(α)P.

The previous proposition guarantees that (α) is well-defined.
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Definition

Let X/K be a nonsingular complete curve. Let P ∈ X and v the
corresponding valuation. Let Kv = Ov/Mv be the residue class
field. Recall that K ↪→ Kv . We define

deg(P) = [Kv : K ].

When deg(P) = 1 we say that P is a rational point of X .

We will prove the following claim in the next course.

Claim

deg(P) is always finite. In particular, if K is algebraically closed
then all points on X are rational.
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Definition

Let X/K be a nonsingular complete curve. Let
D =

∑
P aPP ∈ Div(X ). We define

deg(D) =
∑
P

aP deg(P).

Theorem

Let X/K be a nonsingular complete curve. Then, ∀α ∈ K (X )×,

deg((α)) =
∑
P

vP(α) deg(P) = 0.

Moreover, ∑
P

max(0, vP(α)) deg(P) = [L : K (α)] .
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Discussion

The above theorem proves that every function has the same
number of zeros and poles. Moreover, this number is the degree of
the extension L/K (α).

Proving this theorem requires a fair amount of work and, in
particular, makes use of the fundamental equality which we’ll prove
in the next course when we will discuss factorization in ring
extensions.
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Definition

1 We denote the zero divisor (aP = 0 for all P ∈ X ) by 0.

2 A divisor D =
∑

P aPP is called positive if aP ≥ 0 for all
P ∈ X .

Definition

We put a partial ordering ≥ on Div(X ) in the natural way:
D ′ ≥ D ⇐⇒ D ′ − D is a positive divisor (namely, D ′ − D ≥ 0).
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Definition (Riemann-Roch spaces)

Let L/K be a function field. For D ∈ Div(L/K ) define the
Riemann-Roch space of D by

L(D) =
{
α ∈ L× | (α) + D ≥ 0

}
∪ {0}.

Example

If P,Q ∈ X and D = 3P − 2Q then α ∈ L(D) if and only if

vP(α) ≥ −3. Read α is allowed to have at most “3 poles” at
P.

α must not have poles anywhere other than P.

vQ(α) ≥ 2. Read α must have at least “2 zeros” at Q.
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Claim

Take L = K (x). Then,
L(rP∞)

is precisely the set of all polynomials in x with degree at most r .

Proof.

By definition α = f
g ∈ L(rP∞) if and only if

v∞(α) ≥ −r .

α has no other pole.

The second item implies that g = 1. Otherwise, α would have a
pole at a “point” which corresponds to an irreducible component
of g =⇒ α = f . Since v∞(α) = − deg(f ) the first item implies
that deg(f ) ≤ r .
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Claim

L(0) = K .

Proof.

α ∈ L(0) ⇐⇒ α has no poles. The proof then follows since
OX (X ) = K .

Claim

L(D) is a K-vector space.

Proof.

Readily follows from the fact that for every P ∈ X

vP(α + β) ≥ min(vP(α), vP(β))

and since vP(K×) = 0.
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Definition

We denote `(D) = dimK (L(D)).

Claim

deg(D) < 0 =⇒ `(D) = 0

Proof.

Let 0 6= α ∈ L(D). Then (α) + D ≥ 0. Thus

deg((α) + D) ≥ 0.

But
deg((α) + D) = deg((α)) + deg(D) = deg(D).

To conclude, we showed that `(D) > 0 =⇒ deg(D) ≥ 0.

Gil Cohen Riemann’s Theorem



Proposition

For every divisor D ≥ 0

`(D) ≤ deg(D) + 1.

Remark

For simplicity, we will prove the proposition for an algebraically
closed field. This is mostly for ease of notation. The assumption
will be used as follows: if v is a valuation and Kv = Ov/Mv is the
corresponding residue field then, as we saw, Kv = K.
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For the proof we need to define Laurent expansions.

Lemma

Let L/K be a function field with K algebraically closed. Let
v ∈ V(L/K ). Let Ov ,Mv be the associated local ring and
maximal ideal, and Kv = Ov/Mv

∼= K the residue field. Let π be
a generator of Mv .

For every β ∈ L× there exist:

a unique sequence {bi}∞i≥v(β) with bi ∈ K, and

a unique sequence {βj}∞j≥v(β)+1 with βj ∈ L× and v(βj) ≥ j

such that ∀n ≥ v(β)

β =
n∑

i=v(β)

biπ
i + βn+1.
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Proof.

Let P the point corresponding to v . First, consider α ∈ O×v .
Define

a0 = α(P) ∈ K

α1 = α− a0 ∈ L

Note that

α1(P) = (α− a0)(P) = α(P)− a0(P) = 0.

Thus

α1 ∈Mv =⇒ v(α1) ≥ 1 =⇒ v
(α1

π

)
≥ 0 =⇒ α1

π
∈ Ov .

This gives the expansion for n = 0: α = a0π
0 + α1.
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Proof.

We now repeat for α1
π :

a1 =
(α1

π

)
(P)

α2 =
α1

π
− a1 =

α− a0
π

− a1.

We thus get expansion for n = 1

α = a0 + a1π + α2π.

Indeed, α2(P) = 0 =⇒ v(α2) ≥ 1 =⇒ v(α2π) ≥ 2.

For a general 0 6= β ∈ L recall that we can write β = πv(β)α where
α ∈ O×v . Expand α and plug in. Uniqueness is left as an
exercise.
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Recall, we wish to prove

Proposition

For every divisor D ≥ 0

`(D) ≤ deg(D) + 1.

Proof.

Write D =
∑s

i=1 aPi
Pi with aPi

> 0. Let πi be a generator for
MPi

. Laurent expand α at Pi to get

α =
−1∑

j=vPi (α)

ai ,jπ
j
i + αi ,0

Recall that vPi
(αi ,0) ≥ 0.
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Proof.

Define the map

µ : L(D)→ K aP1 × · · · × K aPs

α 7→ (a1,vP1 (α), . . . , a1,−1, . . . , as,vPs (α), . . . , as,−1).

Observe that µ is a homomorphism of K -vector spaces and so

`(D) = dim ker(µ) + dim Im(µ).

Clearly, dim Im(µ) ≤
∑s

i=1 aPi
= deg(D) (note that we use that all

points are rational).

Now, if α ∈ ker(µ) then α ∈ OPi
for all i ∈ [s]. But together with

α ∈ L(D) we get that α has no poles, and so α ∈ K . Thus,
ker(µ) = K and in particular dim ker(µ) = 1.
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In fact more is true

Proposition

Let X/K be a nonsingular complete curve. Then,

`(D) ≤ max(0, deg(D) + 1).

Theorem (Riemann’s Theorem)

Let X/K be a nonsingular complete curve. Then, there exists
g = g(X ) ∈ N such that for every D ∈ Div(X )

`(D) ≥ deg(D) + 1− g .

g is called the genus of X .

This is a BIG theorem. We will prove it in the next course. In fact,
we will prove a strengthening called the Riemann-Roch Theorem.
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