Riemann's Theorem

Gil Cohen

June 10, 2019

Discussion

Let X/K be a nonsingular complete curve with function field K(X)/K. Let P_1, \ldots, P_s be a set of points on X. We will be interested in questions such as

- Is it possible to find a nonconstant function $\alpha \in K(X)$ that has no poles outside this set? Yes.
- Given $a \in \mathbb{N}$ is there a function $\alpha \in K(X)$ that has pole order precisely a at $P(v_P(\alpha) = -a)$ and no other poles? True for a "large enough" a.
- How many zeros and poles a given function $\alpha \in K(X) \setminus K$ has? Same number $[K(X) : K(\alpha)]!$

Example

Let K be algebraically closed. Let \mathbb{P}^1/K be the projective line with field of functions K(x). Recall that we can identify \mathbb{P}^1 with $K \cup \{\infty\}$ in such a way that K[x] is the ring of functions defined everywhere on K.

Let $\alpha_1,\ldots,\alpha_s\in K$ and $a_\infty,a_1,\ldots,a_s\in \mathbb{N}$. Take any $\beta\notin\{\alpha_1,\ldots,\alpha_s\}$ and set $b=a_\infty+a_1+\cdots+a_s$. Then the function

$$\frac{(x-\beta)^b}{(x-\alpha_1)^{a_1}\cdots(x-\alpha_s)^{a_s}}\in K(x)$$

has

- pole order a_{∞} at ∞ .
- pole order a_i at α_i for i = 1, ..., s.
- no other poles.

The following proposition that we will prove in the next course asserts that every nonzero function in L has a finite number of poles and zeros.

Proposition

Let L/K be a function field. Then, for every $\alpha \in L^{\times}$

$$|\{v \in \mathcal{V}(L/K) \mid v(\alpha) \neq 0\}| < \infty.$$

Let X/K be a nonsingular complete curve with function field L/K. The group of divisors of L/K is the free abelian group generated by $\{x_v \mid v \in \mathcal{V}(L/K)\}$. That is,

$$\mathsf{Div}(L/K) = \bigoplus_{v \in \mathcal{V}(L/K)} \mathbb{Z} x_v.$$

Identifying $\mathcal{V}(L/K)$ with X as usual, we can write $\mathsf{Div}(L/K)$ as

$$\mathsf{Div}(X) = \bigoplus_{P \in X} \mathbb{Z}P.$$

An element $D \in \text{Div}(X)$ is called a divisor of L. $D = \sum_{P} a_{P}P$ where $a_{P} = 0$ except for finitely many $P \in X$.

An element in L (namely, a function) is naturally mapped to a divisor. Given $\alpha \in L$ we define the divisor

$$(\alpha) = \sum_{P \in X} v_P(\alpha) P.$$

The previous proposition guarantees that (α) is well-defined.

Let X/K be a nonsingular complete curve. Let $P \in X$ and v the corresponding valuation. Let $K_v = \mathcal{O}_v/\mathcal{M}_v$ be the residue class field. Recall that $K \hookrightarrow K_v$. We define

$$\deg(P) = [K_v : K].$$

When deg(P) = 1 we say that P is a rational point of X.

We will prove the following claim in the next course.

Claim

deg(P) is always finite. In particular, if K is algebraically closed then all points on X are rational.

Let X/K be a nonsingular complete curve. Let $D = \sum_P a_P P \in \text{Div}(X)$. We define

$$\deg(D) = \sum_P a_P \deg(P).$$

$\mathsf{Theorem}$

Let X/K be a nonsingular complete curve. Then, $\forall \alpha \in K(X)^{\times}$,

$$\deg((\alpha)) = \sum_{P} v_{P}(\alpha) \deg(P) = 0.$$

Moreover.

$$\sum_{P} \max(0, v_{P}(\alpha)) \deg(P) = [L : K(\alpha)].$$

Discussion

The above theorem proves that every function has the same number of zeros and poles. Moreover, this number is the degree of the extension $L/K(\alpha)$.

Proving this theorem requires a fair amount of work and, in particular, makes use of the fundamental equality which we'll prove in the next course when we will discuss factorization in ring extensions.

- **1** We denote the zero divisor $(a_P = 0 \text{ for all } P \in X)$ by 0.
- ② A divisor $D = \sum_{P} a_{P}P$ is called positive if $a_{P} \geq 0$ for all $P \in X$.

Definition

We put a partial ordering \geq on Div(X) in the natural way:

$$D' \ge D \iff D' - D$$
 is a positive divisor (namely, $D' - D \ge 0$).

Definition (Riemann-Roch spaces)

Let L/K be a function field. For $D \in Div(L/K)$ define the Riemann-Roch space of D by

$$\mathcal{L}(D) = \left\{ \alpha \in L^{\times} \mid (\alpha) + D \ge 0 \right\} \cup \{0\}.$$

Example

If $P, Q \in X$ and D = 3P - 2Q then $\alpha \in \mathcal{L}(D)$ if and only if

- $v_P(\alpha) \ge -3$. Read α is allowed to have at most "3 poles" at P.
- α must not have poles anywhere other than P.
- $v_Q(\alpha) \geq 2$. Read α must have at least "2 zeros" at Q.

Claim

Take
$$L = K(x)$$
. Then,
 $\mathcal{L}(rP_{\infty})$

is precisely the set of all polynomials in x with degree at most r.

Proof.

By definition $\alpha = \frac{f}{g} \in \mathcal{L}(rP_{\infty})$ if and only if

- $v_{\infty}(\alpha) \geq -r$.
- ullet α has no other pole.

The second item implies that g=1. Otherwise, α would have a pole at a "point" which corresponds to an irreducible component of $g \implies \alpha = f$. Since $v_{\infty}(\alpha) = -\deg(f)$ the first item implies that $\deg(f) \leq r$.

Claim

$$\mathcal{L}(0)=K.$$

Proof.

 $\alpha \in \mathcal{L}(0) \iff \alpha$ has no poles. The proof then follows since $\mathcal{O}_X(X) = K$.

Claim

 $\mathcal{L}(D)$ is a K-vector space.

Proof.

Readily follows from the fact that for every $P \in X$

$$v_P(\alpha + \beta) \ge \min(v_P(\alpha), v_P(\beta))$$

and since $v_P(K^{\times}) = 0$.

We denote $\ell(D) = \dim_{\mathcal{K}}(\mathcal{L}(D))$.

Claim

$$\deg(D) < 0 \implies \ell(D) = 0$$

Proof.

Let $0 \neq \alpha \in \mathcal{L}(D)$. Then $(\alpha) + D \geq 0$. Thus

$$\deg((\alpha)+D)\geq 0.$$

But

$$\deg((\alpha) + D) = \deg((\alpha)) + \deg(D) = \deg(D).$$

To conclude, we showed that $\ell(D) > 0 \implies \deg(D) \ge 0$.

Proposition

For every divisor $D \ge 0$

$$\ell(D) \leq \deg(D) + 1.$$

Remark

For simplicity, we will prove the proposition for an algebraically closed field. This is mostly for ease of notation. The assumption will be used as follows: if v is a valuation and $K_v = \mathcal{O}_v/\mathcal{M}_v$ is the corresponding residue field then, as we saw, $K_v = K$.

For the proof we need to define Laurent expansions.

Lemma

Let L/K be a function field with K algebraically closed. Let $v \in \mathcal{V}(L/K)$. Let $\mathcal{O}_v, \mathcal{M}_v$ be the associated local ring and maximal ideal, and $K_v = \mathcal{O}_v/\mathcal{M}_v \cong K$ the residue field. Let π be a generator of \mathcal{M}_v .

For every $\beta \in L^{\times}$ there exist:

- a unique sequence $\{b_i\}_{i>v(\beta)}^{\infty}$ with $b_i \in K$, and
- a unique sequence $\{\beta_j\}_{j\geq v(\beta)+1}^{\infty}$ with $\beta_j\in L^{\times}$ and $v(\beta_j)\geq j$ such that $\forall n\geq v(\beta)$

$$\beta = \sum_{i=\nu(\beta)}^{n} b_i \pi^i + \beta_{n+1}.$$

Proof.

Let P the point corresponding to v. First, consider $\alpha \in \mathcal{O}_v^{\times}$. Define

$$a_0 = \alpha(P) \in K$$

 $\alpha_1 = \alpha - a_0 \in L$

Note that

$$\alpha_1(P) = (\alpha - a_0)(P) = \alpha(P) - a_0(P) = 0.$$

Thus

$$\alpha_1 \in \mathcal{M}_{\nu} \implies \nu(\alpha_1) \geq 1 \implies \nu\left(\frac{\alpha_1}{\pi}\right) \geq 0 \implies \frac{\alpha_1}{\pi} \in \mathcal{O}_{\nu}.$$

This gives the expansion for n = 0: $\alpha = a_0 \pi^0 + \alpha_1$.

Proof.

We now repeat for $\frac{\alpha_1}{\pi}$:

$$\begin{aligned} \mathbf{a}_1 &= \left(\frac{\alpha_1}{\pi}\right)(P) \\ \alpha_2 &= \frac{\alpha_1}{\pi} - \mathbf{a}_1 = \frac{\alpha - \mathbf{a}_0}{\pi} - \mathbf{a}_1. \end{aligned}$$

We thus get expansion for n = 1

$$\alpha = a_0 + a_1 \pi + \alpha_2 \pi.$$

Indeed,
$$\alpha_2(P) = 0 \implies \nu(\alpha_2) \ge 1 \implies \nu(\alpha_2\pi) \ge 2$$
.

For a general $0 \neq \beta \in L$ recall that we can write $\beta = \pi^{\mathsf{v}(\beta)} \alpha$ where $\alpha \in \mathcal{O}_{\mathsf{v}}^{\times}$. Expand α and plug in. Uniqueness is left as an exercise.

Recall, we wish to prove

Proposition

For every divisor $D \ge 0$

$$\ell(D) \leq \deg(D) + 1.$$

Proof.

Write $D = \sum_{i=1}^{s} a_{P_i} P_i$ with $a_{P_i} > 0$. Let π_i be a generator for \mathcal{M}_{P_i} . Laurent expand α at P_i to get

$$\alpha = \sum_{j=\nu_{P_i}(\alpha)}^{-1} a_{i,j} \pi_i^j + \alpha_{i,0}$$

Recall that $v_{P_i}(\alpha_{i,0}) \geq 0$.

Proof.

Define the map

$$\mu: \mathcal{L}(D) \to K^{a_{P_1}} \times \cdots \times K^{a_{P_s}}$$

$$\alpha \mapsto (a_{1,\nu_{P_1}(\alpha)}, \dots, a_{1,-1}, \dots, a_{s,\nu_{P_s}(\alpha)}, \dots, a_{s,-1}).$$

Observe that μ is a homomorphism of K-vector spaces and so

$$\ell(D) = \dim \ker(\mu) + \dim \operatorname{Im}(\mu).$$

Clearly, dim Im $(\mu) \le \sum_{i=1}^{s} a_{P_i} = \deg(D)$ (note that we use that all points are rational).

Now, if $\alpha \in \ker(\mu)$ then $\alpha \in \mathcal{O}_{P_i}$ for all $i \in [s]$. But together with $\alpha \in \mathcal{L}(D)$ we get that α has no poles, and so $\alpha \in K$. Thus, $\ker(\mu) = K$ and in particular dim $\ker(\mu) = 1$.

In fact more is true

Proposition

Let X/K be a nonsingular complete curve. Then,

$$\ell(D) \leq \max(0, \deg(D) + 1).$$

Theorem (Riemann's Theorem)

Let X/K be a nonsingular complete curve. Then, there exists $g = g(X) \in \mathbb{N}$ such that for every $D \in \text{Div}(X)$

$$\ell(D) \ge \deg(D) + 1 - g.$$

g is called the genus of X.

This is a **BIG** theorem. We will prove it in the next course. In fact, we will prove a strengthening called the Riemann-Roch Theorem.