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Cofactor, adjugate and the determinant

Let A be an n x n real matrix. We denote by A; ;) the submatrix
of A obtained by deleting the it" row and j*" column. The
(i,j)-minor of A is defined by M; ; = det A; ;).

The cofactor matrix of A is the n x n matrix with (/,j)-entry
Cij = (-1)™M;.

The adjugate of A is adj(A) = CT.
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Let A be a square matrix. Then,

Aadj(A) = adj(A)A = det(A)T

Corollary

Let A be an invertible matrix. Then,

adj(A) = det(A)A~L
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The resolvent

Let A be a real symmetric n X n matrix. The resolvent of A is
defined by (x/ — A)~1.

Claim

Let A be a real symmetric n x n matrix. If py, ..., u, are the
eigenvalues of a A with corresponding eigenvectors 1, . .., 1,
then
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The resolvent

Let M be a real symmetric n x n matrix, and N a matrix obtained
by deleting the ith row and column of M. Then,

on(x)

=e(i)T(xT — “Le(i).
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Extra space for the proof




Cauchy'’s interlacing theorem

LThe resolvent

Combinatorial meaning of the derivative of ¢

For an undirected graph G = (V, E), we denote by G — v the
graph obtained by deleting v from G. Let ¢ denote the
characteristic polynomial of M¢.

You will be asked to prove in the problem set that

Lemma

For every an undirected graph G = (V, E),

Fe(x) =Y d6-v(x)-

veVv
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Let M be a real symmetric n X n matrix, and b € R". Define
Y(x) = b"(xZT — M) b.

Then,
All zeros and poles of v are simple.
' is negative whenever it is defined.

If p1 < p2 are two consecutive poles of v, the closed interval
[p1, p2] contains exactly one zero of 1.
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Example

Figure: Plot of X—il + é + %
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Theorem

Let A be an n X n real symmetric matrix with eigenvalues
oy > - > ap. Let B a principal submatrix of A of dimension
n — 1 with eigenvalues 1 > --- > 8,_1. Then,

ar>f1>a>0r> > ap_1> Pn1 > Qp.
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Extra space for the proof
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Applications to the Laplacian

Let G be an undirected graph and H obtained by adding an edge
to G. Then, for every 1 < | < n,

Ai(G) < Ai(H) < Aia(G).
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Applications to the Laplacian

Let G be an undirected graph and H obtained by adding an edge
to G. Then,
A2(G) < Ma(H) < X2(G) + 2.

This will probably be left for you to prove on the problem set, also
investigating when the right inequality is tight.
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A final remark on eigenvectors from eigenvalues

These are "bonus” slides for those who took complex analysis.

Recall
n

(=R =Y ]
i=1 !

Using Cauchy residue formula, if p is isolated and v a contour
that goes only around pux we get

75(21 — A)tdz = 2miapap) .
"

So perhaps it is not so surprising that knowing the spectrum of A
allows us, in principle, to obtain information about the
eigenvectors.
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A final remark on eigenvectors from eigenvalues

By a slight tweak,
§£(ZI — A)Lzdz = 2mipapab)
5

Hence,

2mi

155 To((2Z — A)12)dz = .
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