Valuations

Gil Cohen

May 27, 2019

Definition

Let L be a field. A (discrete) valuation is a map

$$v \colon L^{\times} \to \mathbb{Z}$$

s.t. $\forall x, y \in L^{\times}$:

- v(xy) = v(x) + v(y) (namely, v is a group homomorphism).
- $v(x+y) \geq \min(v(x), v(y))$.

We extend v to L by defining $v(0) = +\infty$ ("larger than everything").

Remark

- $v \equiv 0$ is called the trivial valuation.
- If v is a valuation and $n \in \mathbb{N}$ then nv is a valuation.
- v surjective $\iff \exists x \in L^{\times} \text{ such that } v(x) = 1.$

The notion of valuation is motivated by "expressing multiplicities" in factorization.

Example

Let A be a Dedekind domain with K = Frac(A). Let $P \in Max(A)$. We associate with P the P-adic valuation

$$v_P \colon K^{\times} \to \mathbb{Z}$$

as follows: For $0 \neq x \in A$, we factor the ideal $\langle x \rangle$ in A:

$$\langle x \rangle = \prod_{P \in \mathsf{Max}(A)} P^{\mathrm{ord}_P(x)},$$

and define $v_P(x) = \operatorname{ord}_P(x)$. We extend v_P to K in the unique possible way, namely, if $0 \neq x \in K$ then $x = \frac{a}{b}$ for $a, b \in A$ and so we define $v_P(x) = v_P(a) - v_P(b)$. Check this is well-defined.

Remark

- v_P is a surjective valuation as P^2 is strictly contained in P.
- $v_P(x) \ge 0$ for all $x \in A$.
- $v_P(x) = 0$ for $x \in A \iff x \notin P$.
- $P \neq Q \in Max(A) \implies v_P \neq v_Q$. Indeed, take $x \in P \setminus Q$, then $v_P(x) > 0$ whereas $v_Q(x) = 0$.

Claim

Let L be a field and $v: L^{\times} \to \mathbb{Z}$ a valuation. Then,

$$v(1) = v(-1) = 0$$

$$v(-x) = v(x)$$

$$v\left(\frac{1}{x}\right) = -v(x)$$

Proof.

$$v(1) = v(1 \cdot 1) = v(1) + v(1) \implies v(1) = 0.$$

$$0 = v(1) = v((-1) \cdot (-1)) = 2v(-1) \implies v(-1) = 0.$$

Take $x \in L^{\times}$. We have that

$$v(-x) = v((-1)x) = v(-1) + v(x) = v(x).$$

Proof.

As for the last item,

$$0 = v(1) = v\left(x \cdot \frac{1}{x}\right) = v(x) + v\left(\frac{1}{x}\right)$$

Claim (Strict triangle inequality)

Let L be a field and $v: L^{\times} \to \mathbb{Z}$ a valuation. Let $x, y \in L^{\times}$ with $v(x) \neq v(y)$. Then,

$$v(x+y) = \min(v(x), v(y)).$$

Proof.

Assume wlog v(x) < v(y). Assume towards a contradiction that v(x + y) > v(x). Then,

$$v(x) = v(x+y-y) \ge \min(v(x+y), v(-y)) > v(x)$$

contradiction.

Example

Let K be a field, A = K[x] and L = K(x). The maximal ideals in K[x] are in bijection with monic irreducible polynomials over K. Thus, we have a distinct valuation $v_{p(x)}: K(x)^{\times} \to \mathbb{Z}$ for every monic irreducible polynomial in K[x].

We can point at one more valuation

$$v_{\infty}\left(\frac{f(x)}{g(x)}\right) = \deg(g) - \deg(f).$$

Claim

The valuation v_{∞} of K(x) is equal to the valuation v_P of K(x) associated to the maximal ideal $P = \frac{1}{x}K[\frac{1}{x}]$ of the subring $K[\frac{1}{x}]$ of K(x).

Definition

Let $v: K^{\times} \to \mathbb{Z}$ be a valuation. Define

$$\mathcal{O}_{v} = \left\{ x \in K^{\times} \mid v(x) \ge 0 \right\} \cup \{0\},$$

$$\mathcal{M}_{v} = \left\{ x \in K^{\times} \mid v(x) > 0 \right\} \cup \{0\}.$$

The ring (to be proven) \mathcal{O}_v , associated with the valuation v is called a discrete valuation ring (DVR).

Claim

 \mathcal{O}_{v} is a local subring of K with maximal ideal \mathcal{M}_{v} .

Proof

 \mathcal{O}_v is a ring. Take $x, y \in \mathcal{O}_v$ then $v(x), v(y) \geq 0$ and so

$$v(xy) = v(x) + v(y) \ge 0$$

$$v(x+y) \ge \min(v(x), v(y)) \ge 0.$$

Furthermore, v(1) = 0 and so $1 \in \mathcal{O}_v$.

 \mathcal{M}_{ν} is an ideal of $\mathcal{O}_{\nu}.$ Indeed, $\forall m,m'\in\mathcal{M}_{\nu},x\in\mathcal{O}_{\nu}$

$$v(m + m') \ge \min(v(m), v(m')) > 0$$

 $v(mx) = v(m) + v(x) > 0$

Proof.

 \mathcal{O}_{V} is local. Recall that $\forall x \in K^{\times}$ we have that

$$v\left(\frac{1}{x}\right) = -v(x).$$

Thus,

$$x \in \mathcal{O}_{v}^{\times} \iff v(x) = 0 \iff x \notin \mathcal{M}_{v}$$

and so \mathcal{O}_{v} is local.

Another property of valuations is the following.

Claim

Let $v: L^{\times} \to \mathbb{Z}$ be a nontrivial valuation. Let $\pi \in \mathcal{M}_v$ be an element with minimal value $c = v(\pi)$. Then $c \mid v(x)$ for all $x \in L^{\times}$.

Proof.

Take $x \in \mathcal{O}_v$. if c does not divide v(x) then v(x) = cq + r with 0 < r < c. Thus,

$$v\left(\frac{x}{\pi^q}\right) = v(x) - qv(\pi) = r,$$

contradicting the minimality of c. For $x \notin \mathcal{O}_v$ we have v(x) < 0 and so $-v(x) = v(\frac{1}{x}) > 0$. Hence, $c \mid v(x)$.

Corollary

Let L be a field and $v: L^{\times} \to \mathbb{Z}$ be a nontrivial valuation. Then, $\exists c \in \mathbb{N}$ such that $v/c: L^{\times} \to \mathbb{Z}$ is a surjective valuation.

Claim

Let L be a field and $v: L^{\times} \to \mathbb{Z}$ be a valuation. Let $\pi \in \mathcal{M}_v$ be an element with minimal value $v(\pi)$. Then, every element $x \in L^{\times}$ can be written as $x = u\pi^n$ with $u \in \mathcal{O}_v^{\times}$. Moreover, n is unique.

Proof.

Take $x \in L^{\times}$. By the previous claim, $\exists n \in \mathbb{N} \quad v(x) = n \cdot v(\pi)$ and so

$$v(x) = v(\pi^n) \implies v(x/\pi^n) = 0 \implies x/\pi^n \in \mathcal{O}_v^{\times}.$$

Hence, $\exists u \in \mathcal{O}_v^{\times}$ s.t. $x = u\pi^n$.

As for uniqueness, if $v(u\pi^c) = v(w\pi^d)$ then

$$0 = v(u) - v(w) = v(\pi^{d-c}) = (d-c)v(\pi) \implies d = c$$

Claim

Let K be a field and $v \colon K^{\times} \to \mathbb{Z}$ a nontrivial valuation. Then, \mathcal{O}_v is a local PID.

Proof.

Given an ideal I of \mathcal{O}_{v} let $d \geq 1$ be the minimal integer such that $\pi^{d} \in I$. We claim that

$$I = \pi^d \mathcal{O}_v$$
.

Clearly $\pi^d \mathcal{O}_v \subseteq I$. Now, if $x \in I$ then $x = u\pi^c$ for $c \geq d$ and $u \in \mathcal{O}_v^{\times}$. Thus, $x = (u\pi^{c-d})\pi^d$. Since $u\pi^{c-d} \in \mathcal{O}_v$ we conclude $x \in \pi^d \mathcal{O}_v$.

Corollary

Let $v: L^{\times} \to \mathbb{Z}$ be a nontrivial valuation. Let $\pi \in \mathcal{M}_v$ be an element with minimal value. Then,

- $\mathcal{M}_{\mathbf{v}} = \pi \mathcal{O}_{\mathbf{v}}$.
- v is uniquely determined by $v(\pi)$.
- v is surjective $\iff v(\pi) = 1$.

Definition

For a field K we let

$$\mathsf{SurjVal} = \left\{ v : \mathsf{K}^{\times} \twoheadrightarrow \mathbb{Z} \right\}$$

Definition

Let K be a field. We define

$$LPID = \{A \subseteq K \text{ local PID with } Frac(A) = K\}$$

Claim

Let K be a field. The map

$$\mathsf{SurjVal} \to \mathsf{LPID}$$
$$v \mapsto \mathcal{O}_v$$

is a bijection.

Proof

We proved that this map is well-defined.

Injectivity. Take $v_1, v_2 \in \text{SurjVal}$ with $\mathcal{O}_{v_1} = \mathcal{O}_{v_2}$. Then, $\mathcal{M}_{v_1} = \mathcal{M}_{v_2}$ and so if π is a generator for this maximal ideal, then $v_1(\pi) = v_2(\pi) = 1$ by surjectivity. The proof then follows since v_1, v_2 are determined by their value on π .

Subjectivity. Given $\mathcal{O} \in \mathsf{LPID}$ let \mathcal{M} be its unique maximal ideal. \mathcal{O} is a Dedekind domain and so the \mathcal{M} -adic valuation $v_{\mathcal{M}}$ is well-defined. Since $\mathsf{Frac}(\mathcal{O}) = K$ the domain of $v_{\mathcal{M}}$ is K^{\times} . Check that $v_{\mathcal{M}}$ is a preimage of \mathcal{M} under the map.

Claim

Let A be a domain of dimension 1 with Frac(A) = K. Then, the map

$$\left\{v: K^{\times} \twoheadrightarrow \mathbb{Z} \mid v(A) \geq 0\right\} \rightarrow \mathsf{Max}(A)$$
$$v \mapsto \mathcal{M}_{v} \cap A$$

is well-defined. Furthermore, if A is a Dedekind domain then the map is a bijection.

Proof

Take $v: K^{\times} \to \mathbb{Z}$ with $v(A) \geq 0$. Then, $A \subseteq \mathcal{O}_v$. Since $M_v \in \mathsf{Max}(\mathcal{O}_v)$ we have that

$$M = \mathcal{M}_{\nu} \cap A \in \operatorname{Spec}(A)$$
.

Since dim(A) = 1, either $M = \langle 0 \rangle$ or $M \in Max(A)$. We are ought to show that $M \neq \langle 0 \rangle$.

Since $A \setminus M \subseteq \mathcal{O}_v^{\times}$ we have that $A_M \subseteq \mathcal{O}_v$. However, if $M = \langle 0 \rangle$ then $A_M = K \implies K = \mathcal{O}_v$ implying v is trivial (and so not surjective).

Proof.

We turn to prove that if A is a Dedekind domain then the map $v \mapsto \mathcal{M}_v \cap A$ is a bijection.

Fix $M \in Max(A)$. Recall the M-adic valuation $v_M : K^{\times} \to \mathbb{Z}$ that we defined for Dedekind domains. We already noted that:

- v_M is surjective.
- $v_M(A) \ge 0$. Hence, $M \mapsto v_M$ is indeed a map $\operatorname{Max}(A) \to \{v : K^{\times} \twoheadrightarrow \mathbb{Z} \mid v(A) \ge 0\}$.
- $v_M \neq v_N$ for distinct $N, M \in Max(A)$. Thus, $m \mapsto v_M$ is injective.
- Showing that the two maps above are inverses of each other is left as an exercise.

Corollary

Let A be a Dedekind domain with Frac(A) = K. Then,

$$\bigcap_{v|v(A)\geq 0} \mathcal{O}_v = A.$$

Proof.

Recall that

$$A = \bigcap_{M \in \mathsf{Max}(A)} A_M.$$

The proof follows since there is a bijection between surjective valuations $v: K^{\times} \to \mathbb{Z}$ with $v(A) \geq 0$ and Max(A), where $\mathcal{O}_v = A_M$. Note that every valuation can be made surjective while keeping the property $v(A) \geq 0$.

