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Introduction

Error correcting codes

Definition (Error correcting code)

A set C ⊆ Σn s.t.

dist(x , y) = |{i ∈ [n] : xi 6= yi}| ≥ δn

∀x 6= y ∈ C is a code with distance δ.

We focus on linear codes in which Σ = F is a finite field and
C an F-vector space. In such case, the rate of C is given by

ρ =
1

n
dimC .

A linear code can be defined as a linear map c : Fk → Fn s.t.
C = c(Fk).
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Introduction

Error correcting codes

A family of codes {c : Fk → Fn(k)}k is asymptotically good if
both δ, ρ = Ω(1).

Good codes exist.

A code can be used for communication over imperfect
channels; Instead of sending a message m ∈ Fk one sends
c(m). If the fraction of errors < δ

2 , the receiver can infer m.

What if we are only interested in mi for some i ∈ [k]?
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Introduction

Locally decodable codes

Definition (Locally decodable codes; Katz-Trevisan 2000)

A code c : Fk → Fn is a q-query locally decodable code (LDC) if
there is a randomized algorithm

D : Fn × [k]→ F

(called a decoder) s.t. ∀i ∈ [k], m ∈ Fk , r ∈ Fn,

dist(r , c(m)) ≤ δn =⇒ Pr[D(r , i) = mi ] ≥
2

3
.

Further, the number of queries made by D to r is bounded by q.
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Introduction

Locally correctable codes

Definition (Locally correctable codes)

A code C ⊆ Fn is a q-query locally correctable code (LCC) if there
is a randomized algorithm

D : Fn × [n]→ F

(called a corrector) s.t. ∀i ∈ [n], c ∈ C , r ∈ Fn,

dist(c , r) ≤ δn =⇒ Pr[D(r , i) = ci ] ≥
2

3
.

Further, the number of queries made by D to r is at most q.

We will focus on non-adaptive LC in which the choice of which
indices the query is done prior to the actual querying.
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Introduction

What is known?

Much work has been done on the constant query regime.

More recently, good LC were considered, where we wish to
minimize the query complexity.

Katz-Trevisan proved q = Ω(log n) for LDC.

Linear LCC =⇒ linear LDC.

LC need structure - random won’t do.

What is the lowest query complexity q = q(n) of good codes?
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Introduction

Explicit constructions

Reed-Muller codes give q = nε for any desired constant ε.

For a while, no (nontrivial) LC were known with ρ > 1
2 .

The first construction to break the “rate 1
2 barrier” is via

multiplicity codes (Kopparty-Saraf-Yekhanin 2010).

Alternative constructions were obtained using expanders
(Hemenway-Rafail-Ostrovsky-Wootters 2013) and using lifted
RM (Guo-Kopparty-Saraf 2013). All require q = nε.
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Introduction

Explicit constructions

The state of the art construction of LC
(Kopparty-Meir-Ron-Zewi-Saraf 2016) achieves

q = 2Õ(
√

log n) = no(1).

Spoiler: In this work we don’t improve upon this great result
(nor show it is tight).

This work’s theme

bad LC =⇒ good LC.
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Reed-Muller, Multiplicity codes and KMRZS

Reed-Muller Codes

As an example, we describe an LCC that works assuming no errors,
having query complexity

√
n.

Let Fq be finite field. Define

C = {f (F2
q) | f ∈ F<q−1

q [x , y ]}.

We have n = q2 and

k =
q(q − 1)

2
≈ n

2
.

Hence, ρ = 1
2 − o(1).
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Reed-Muller, Multiplicity codes and KMRZS

Reed-Muller Codes

The corrector. Given a desired index p = (a, b) ∈ F2
q, sample a

random line through p,

L = {(At + a,Bt + b) | t ∈ Fq},

and query on L \ p.

Analysis. Set g(t) = f (At + a,Bt + b). As deg g < q − 1, the
q − 1 points we query determine g . Thus, we can compute

g(0) = f (a, b) = f (p).
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Reed-Muller, Multiplicity codes and KMRZS

Reed-Muller Codes

As Nati pointed out, if we assume no errors then we have a
trivial corrector with q = 1 queries.

The above LCC however has the advantage of being smooth:
The marginal distribution of every query is uniform over
F2
q \ p.

Observe that a smooth LCC has distance Ω( 1
q ) = Ω( 1√

n
).

In any case, to get a good code, one can restrict to degree αq
for a constant α < 1.
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Reed-Muller, Multiplicity codes and KMRZS

Multiplicity codes

A first example of multiplicity codes is given by

(F3
q)n ⊇ C = {

(
f (F2

q), fx(F2
q), fy (F2

q)
)
| f ∈ F<d

q [x , y ]}

with d = 2q − 2. The rate is then ρ ≈ 2
3 .

Corrector & Analysis.

Pass three random lines through p. Each gives a linear
relation between f (p), fx(p), fy (p).

W.h.p the relations are linearly independent.

Solve a system of linear equations to get (f (p), fx(p), fy (p)).

One can consider higher dimension and higher order derivatives.



Rate amplification and query-efficient distance amplification for linear LCC and LDC

Reed-Muller, Multiplicity codes and KMRZS

KMRZS and the AEL distance amplification procedure

The KMRZS construction consists of two steps:

1 Use a multiplicity code with δ = 1
poly log n and q = 2Õ(

√
log n).

2 Amplify the distance to a constant.

For (2), the AEL distance amplification procedure is invoked
(Alon-Edmonds-Luby 1995) that converts a q-query LC with
distance δ to a

qnew = q · poly
1

δ

query LC with constant distance.
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Our contribution

Query-efficient distance amplification

bad LC =⇒ good LC.

Theorem (Query-efficient distance amplification)

One can efficiently transform a q-query LDC with distance δ to a
constant distance LDC with query complexity

qnew = q · log(n) · q
(

1

δ

)
,

where q(b) is the query complexity of a good LDC on message
length b.
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Our contribution

Query-efficient distance amplification

Corollary

For any constant α < 1 a q-query LDC with distance δ = 1
nα can

be transformed to a constant distance LDC with query complexity

qnew = qO(log log n).

As another corollary, one can amplify

δ = 2−(log n)α ⇒ qnew = qO(log log log n)
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Our contribution

Rate amplification

Our second contribution is a rate amplification procedure.

Theorem (Rate amplification for LCC)

Let ρdesired < 1 constant. Let C be a constant distance q-query
LCC with rate ρ. One can transform C to a good LCC with
ρ ≥ ρdesired and query complexity

qnew = (q · log n)
poly

(
1
ρ

)
.

We will discuss only this result in the remaining of this talk.



Rate amplification and query-efficient distance amplification for linear LCC and LDC

A dual view on Reed-Muller

Overview

1 Introduction

2 Reed-Muller, Multiplicity codes and KMRZS

3 Our contribution

4 A dual view on Reed-Muller

5 Structure theorem for LCC

6 Rate amplification for LCC



Rate amplification and query-efficient distance amplification for linear LCC and LDC

A dual view on Reed-Muller

A dual view on Reed-Muller

Claim

If g ∈ Fq[t] is non constant and deg g < q − 1 then∑
t∈Fq

g(t) = 0.

Recall that

La,b,A,B = {(At + a,Bt + b) | t ∈ Fq}.

If we assume A 6= 0 it suffices to consider

La,b = {(t, at + b) | t ∈ Fq}.
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A dual view on Reed-Muller

A dual view on Reed-Muller

Let

1a,b(p) =

{
1, p ∈ La,b

0, otherwise.

We can write

1a,b(x , y) = 1− (y − (ax + b))q−1.

We have that

(y − (ax + b))q−1 =

q−1∑
k=0

k∑
j=0

(−1)k
(
q − 1

k

)(
k

j

)
ajbk−jx jyq−1−k .
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A dual view on Reed-Muller

A dual view on Reed-Muller

(y − (ax + b))q−1 =

q−1∑
k=0

k∑
j=0

ck,j · ajbk−j · x jyq−1−k .

Observe that having {x jy i | i + j ≤ q − 1} in C⊥ would suffice for
the RM corrector. Now,

dimC⊥ =
q(q + 1)

2

implying

dimC = q2 − dimC⊥ =
q(q − 1)

2
.

Thence, C⊥ is the dual of RM.
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Structure theorem for LCC

Structure theorem for LCC

In the dual view on RM, we have

1 The point set P = F2
q.

2 With every p ∈ P we associated a distribution Dp over FP
q s.t.

Pr
f∼Dp

[f (p) = 0] = 0.

Moreover, |f | = |{p′ | f (p′) 6= 0}| ≤ q.

3 ∀p 6= p′ ∈ P

Pr
f∼Dp

[f (p′) 6= 0] ≤ q − 1

q2 − 1
=

1

q + 1
.

4 dim SpanL ≤ q(q+1)
2 where L =

⋃
p∈P supp(Dp).
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Structure theorem for LCC

Structure theorem for LCC

Definition (Dual LCC)

A (q, τ, ρ)-Dual LCC is a family of distributions D = {Dp}p∈P s.t.

1 ∀p ∈ P
Pr

f∼Dp

[f (p) = 0] = 0.

2 ∀f ∈ L |f | ≤ q, where L =
⋃

p∈P supp(Dp)

3 ∀p 6= p′ ∈ P,
Pr

f∼Dp

[f (p′) 6= 0] ≤ τ.

4 dim SpanL ≤ (1− ρ)|P|.
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Structure theorem for LCC

Structure theorem for LCC

Definition (Dual LCC)

A (q, τ, ρ)-Dual LCC is a family of distributions D = {Dp}p∈P s.t.

1 Prf∼Dp [f (p) = 0] = 0.

2 |f | ≤ q.

3 Prf∼Dp [f (p′) 6= 0] ≤ τ.
4 dim SpanL ≤ (1− ρ)|P|.

We generalize the definition and allow L to contain further
elements other than L0 = ∪psuppDp.

Theorem (Informal)

C is a q-query linear LCC with distance d ⇐⇒ C⊥ is a
(q + 1, τ = q

d , ρ = 1
n dimC ) dual LCC.
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Rate amplification for LCC

Rate amplification for LCC

The natural way of amplifying the rate of an LCC is to tensor the
corresponding dual LCC with itself.

Given a (q, τ, ρ)-Dual LCC (L,D) with L ⊆ FP we define (L′,D′)
as follows:

The point set is P2.

D′ = {D ′(p1,p2) | (p1, p2) ∈ P2} where to sample f ∼ D ′p1,p2
we

do the following:

1 Sample f1 ∼ Dp1 , f2 ∼ Dp2 independently.
2 Output f1f2 that is defined by f1f2(p′1, p

′
2) = f1(p′1)f2(p′2).

L′ ⊆ FP2
is the smallest subspace containing all functions

supported by D′.
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Rate amplification for LCC

Rate amplification for LCC

Claim

(L′,D′) is a (q2, τ , ρ′)-Dual LCC with ρ′ = 2ρ− ρ2.
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Rate amplification for LCC

Rate amplification for LCC
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Rate amplification for LCC
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Rate amplification for LCC
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Rate amplification for LCC
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Rate amplification for LCC

Rate amplification for LCC
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Rate amplification for LCC

Rate amplification for LCC

Let π : P2 → P2 be a matching. Adjoin {ep + eπ(p)}p∈P2 to L.

π should be “axis evasive”: If Xp is the set of points of distance 1
from p then

∀p 6= p′ ∈ P2 |π(Xp) ∩ Xp′ | ≤ s.
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Rate amplification for LCC

Rate amplification for LCC

More generally, one can consider a partition π of P2 s.t.

1 Each part has size c .

2 ∀p 6= p′ ∈ P2 |π(Xp) ∩ Xp′ | ≤ s.

Using such a partition

ρnew = 2ρ− ρ2 − 1

c
qnew = O(cq3)

τnew = O(csq · τ2).

Taking c = o( 1
ρ) and applying this for ≈ log 1

ρ times yields a
constant rate.
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Rate amplification for LCC

Axis-evasive partitions

A probabilistic argument only gives axis-evasive partitions for
c = Ω(log |P|), with s = c .

We give an explicit construction for certain values of c , |P|
with s = O(c2).

More precisely, we require |P| = q to be a prime power and
c + 1 | q2 − 1.
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Rate amplification for LCC

Axis-evasive partitions

Identify Fq2 with F2
q.

Fix α ∈ Fq2 \ Fq.

Let β ∈ Fq2 be an element of order c + 1 in F×
q2 .

The partition is given by the quotient group F×
q2/〈β〉.

There are some technical conditions on α, β that can always
be met.
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Rate amplification for LCC

Summary

This work was about

Bad LC =⇒ good LC

Future research

1 Construct a bad (but not so bad) LC.

2 Can it be that the current 2Õ(
√

log n) bound is tight?

3 Devise an improved distance amplification procedure for LCC.

4 Improve our rate amplification procedure.

5 Amplify rate under more general conditions.

Thank you!
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