# Rate amplification and query-efficient distance amplification for linear LCC and LDC

Gil Cohen, Tal Yankovitz Tel Aviv University

June 15, 2021

# Benny Chor



To the memory of Benny Chor

## Overview

- 1 Introduction
- 2 Reed-Muller, Multiplicity codes and KMRZS
- 3 Our contribution
- 4 A dual view on Reed-Muller
- 5 Structure theorem for LCC
- 6 Rate amplification for LCC

# Error correcting codes

#### Definition (Error correcting code)

A set  $C \subseteq \Sigma^n$  s.t.

$$\operatorname{dist}(x,y) = |\{i \in [n] : x_i \neq y_i\}| \geq \delta n$$

 $\forall x \neq y \in C$  is a code with distance  $\delta$ .

• We focus on linear codes in which  $\Sigma = \mathbb{F}$  is a finite field and C an  $\mathbb{F}$ -vector space. In such case, the rate of C is given by

$$\rho = \frac{1}{n} \dim C.$$

■ A linear code can be defined as a linear map  $c : \mathbb{F}^k \to \mathbb{F}^n$  s.t.  $C = c(\mathbb{F}^k)$ .

# Error correcting codes

- A family of codes  $\{c: \mathbb{F}^k \to \mathbb{F}^{n(k)}\}_k$  is asymptotically good if both  $\delta, \rho = \Omega(1)$ .
- Good codes exist.
- A code can be used for communication over imperfect channels; Instead of sending a message  $m \in \mathbb{F}^k$  one sends c(m). If the fraction of errors  $<\frac{\delta}{2}$ , the receiver can infer m.

What if we are only interested in  $m_i$  for some  $i \in [k]$ ?

## Locally decodable codes

#### Definition (Locally decodable codes; Katz-Trevisan 2000)

A code  $c: \mathbb{F}^k \to \mathbb{F}^n$  is a q-query locally decodable code (LDC) if there is a randomized algorithm

$$D: \mathbb{F}^n \times [k] \to \mathbb{F}$$

(called a decoder) s.t.  $\forall i \in [k], m \in \mathbb{F}^k, r \in \mathbb{F}^n$ ,

$$\operatorname{dist}(r,c(m)) \leq \delta n \implies \Pr[D(r,i)=m_i] \geq \frac{2}{3}.$$

Further, the number of queries made by D to r is bounded by q.

## Locally correctable codes

#### Definition (Locally correctable codes)

A code  $C \subseteq \mathbb{F}^n$  is a q-query locally correctable code (LCC) if there is a randomized algorithm

$$D: \mathbb{F}^n \times [n] \to \mathbb{F}$$

(called a corrector) s.t.  $\forall i \in [n], c \in C, r \in \mathbb{F}^n$ ,

$$\operatorname{dist}(c,r) \leq \delta n \quad \Longrightarrow \quad \Pr[D(r,i)=c_i] \geq \frac{2}{3}.$$

Further, the number of queries made by D to r is at most q.

We will focus on non-adaptive LC in which the choice of which indices the query is done prior to the actual querying.

## What is known?

- Much work has been done on the constant query regime.
- More recently, good LC were considered, where we wish to minimize the query complexity.
- Katz-Trevisan proved  $q = \Omega(\log n)$  for LDC.
- Linear LCC ⇒ linear LDC.
- LC need structure random won't do.

What is the lowest query complexity q = q(n) of good codes?

## **Explicit constructions**

- Reed-Muller codes give  $q = n^{\varepsilon}$  for any desired constant  $\varepsilon$ .
- For a while, no (nontrivial) LC were known with  $\rho > \frac{1}{2}$ .
- The first construction to break the "rate  $\frac{1}{2}$  barrier" is via multiplicity codes (Kopparty-Saraf-Yekhanin 2010).
- Alternative constructions were obtained using expanders (Hemenway-Rafail-Ostrovsky-Wootters 2013) and using lifted RM (Guo-Kopparty-Saraf 2013). All require  $q=n^{\varepsilon}$ .

## **Explicit constructions**

■ The state of the art construction of LC (Kopparty-Meir-Ron-Zewi-Saraf 2016) achieves

$$q=2^{\widetilde{O}(\sqrt{\log n})}=n^{o(1)}.$$

Spoiler: In this work we don't improve upon this great result (nor show it is tight).

This work's theme bad LC  $\implies$  good LC.

#### Overview

- 1 Introduction
- 2 Reed-Muller, Multiplicity codes and KMRZS
- 3 Our contribution
- 4 A dual view on Reed-Muller
- 5 Structure theorem for LCC
- 6 Rate amplification for LCC

## Reed-Muller Codes

As an example, we describe an LCC that works assuming no errors, having query complexity  $\sqrt{n}$ .

Let  $\mathbb{F}_q$  be finite field. Define

$$C = \{ f(\mathbb{F}_q^2) \mid f \in \mathbb{F}_q^{< q-1}[x, y] \}.$$

We have  $n = q^2$  and

$$k=\frac{q(q-1)}{2}\approx\frac{n}{2}.$$

Hence, 
$$\rho = \frac{1}{2} - o(1)$$
.

#### Reed-Muller Codes

**The corrector.** Given a desired index  $p = (a, b) \in \mathbb{F}_q^2$ , sample a random line through p,

$$L = \{ (At + a, Bt + b) \mid t \in \mathbb{F}_q \},\$$

and query on  $L \setminus p$ .

**Analysis.** Set g(t) = f(At + a, Bt + b). As deg g < q - 1, the q - 1 points we query determine g. Thus, we can compute

$$g(0) = f(a, b) = f(p).$$

## Reed-Muller Codes

- As Nati pointed out, if we assume no errors then we have a trivial corrector with q=1 queries.
- The above LCC however has the advantage of being smooth: The marginal distribution of every query is uniform over  $\mathbb{F}_q^2 \setminus p$ .
- Observe that a smooth LCC has distance  $\Omega(\frac{1}{q}) = \Omega(\frac{1}{\sqrt{n}})$ .
- In any case, to get a good code, one can restrict to degree  $\alpha q$  for a constant  $\alpha < 1$ .

## Multiplicity codes

A first example of multiplicity codes is given by

$$(\mathbb{F}_q^3)^n\supseteq C=\{\left(f(\mathbb{F}_q^2),f_x(\mathbb{F}_q^2),f_y(\mathbb{F}_q^2)\right)\mid f\in\mathbb{F}_q^{< d}[x,y]\}$$

with d=2q-2. The rate is then  $\rho \approx \frac{2}{3}$ .

#### Corrector & Analysis.

- Pass three random lines through p. Each gives a linear relation between f(p),  $f_x(p)$ ,  $f_y(p)$ .
- W.h.p the relations are linearly independent.
- Solve a system of linear equations to get  $(f(p), f_x(p), f_y(p))$ .

One can consider higher dimension and higher order derivatives.

## KMRZS and the AEL distance amplification procedure

The KMRZS construction consists of two steps:

- 1 Use a multiplicity code with  $\delta = \frac{1}{\operatorname{poly}\log n}$  and  $q = 2^{\widetilde{O}(\sqrt{\log n})}$ .
- 2 Amplify the distance to a constant.

For (2), the AEL distance amplification procedure is invoked (Alon-Edmonds-Luby 1995) that converts a q-query LC with distance  $\delta$  to a

$$q_{\mathsf{new}} = q \cdot \mathsf{poly} rac{1}{\delta}$$

query LC with constant distance.

## Overview

- 1 Introduction
- 2 Reed-Muller, Multiplicity codes and KMRZS
- 3 Our contribution
- 4 A dual view on Reed-Muller
- 5 Structure theorem for LCC
- 6 Rate amplification for LCC

# Query-efficient distance amplification

bad LC 
$$\implies$$
 good LC.

#### Theorem (Query-efficient distance amplification)

One can efficiently transform a q-query LDC with distance  $\delta$  to a constant distance LDC with query complexity

$$q_{\mathsf{new}} = q \cdot \mathsf{log}(n) \cdot q\left(\frac{1}{\delta}\right),$$

where q(b) is the query complexity of a good LDC on message length b.

# Query-efficient distance amplification

#### Corollary

For any constant  $\alpha < 1$  a q-query LDC with distance  $\delta = \frac{1}{n^{\alpha}}$  can be transformed to a constant distance LDC with query complexity

$$q_{\mathsf{new}} = q^{O(\log \log n)}$$
.

As another corollary, one can amplify

$$\delta = 2^{-(\log n)^{\alpha}} \quad \Rightarrow \quad q_{\text{new}} = q^{O(\log \log \log n)}$$

## Rate amplification

Our second contribution is a rate amplification procedure.

#### Theorem (Rate amplification for LCC)

Let  $\rho_{\text{desired}} < 1$  constant. Let C be a constant distance q-query LCC with rate  $\rho$ . One can transform C to a good LCC with  $\rho \geq \rho_{\text{desired}}$  and query complexity

$$q_{\mathsf{new}} = \left(q \cdot \log n\right)^{\mathsf{poly}\left(\frac{1}{\rho}\right)}.$$

We will discuss only this result in the remaining of this talk.

## Overview

- 1 Introduction
- 2 Reed-Muller, Multiplicity codes and KMRZS
- 3 Our contribution
- 4 A dual view on Reed-Muller
- 5 Structure theorem for LCC
- 6 Rate amplification for LCC

## A dual view on Reed-Muller

#### Claim

If  $g \in \mathbb{F}_q[t]$  is non constant and  $\deg g < q-1$  then

$$\sum_{t\in\mathbb{F}_q}g(t)=0.$$

Recall that

$$L_{a,b,A,B} = \{ (At + a, Bt + b) \mid t \in \mathbb{F}_q \}.$$

If we assume  $A \neq 0$  it suffices to consider

$$L_{a,b} = \{(t, at + b) \mid t \in \mathbb{F}_q\}.$$

## A dual view on Reed-Muller

Let

$$\mathbf{1}_{a,b}(p) = egin{cases} 1, & p \in L_{a,b} \ 0, & ext{otherwise}. \end{cases}$$

We can write

$$\mathbf{1}_{a,b}(x,y) = 1 - (y - (ax + b))^{q-1}.$$

We have that

$$(y - (ax + b))^{q-1} = \sum_{k=0}^{q-1} \sum_{j=0}^{k} (-1)^k {q-1 \choose k} {k \choose j} a^j b^{k-j} x^j y^{q-1-k}.$$

#### A dual view on Reed-Muller

$$(y - (ax + b))^{q-1} = \sum_{k=0}^{q-1} \sum_{j=0}^{k} c_{k,j} \cdot a^{j} b^{k-j} \cdot x^{j} y^{q-1-k}.$$

Observe that having  $\{x^jy^i\mid i+j\leq q-1\}$  in  $C^\perp$  would suffice for the RM corrector. Now,

$$\dim C^{\perp} = \frac{q(q+1)}{2}$$

implying

$$\dim C = q^2 - \dim C^{\perp} = \frac{q(q-1)}{2}.$$

Thence,  $C^{\perp}$  is the dual of RM.

#### Overview

- 1 Introduction
- 2 Reed-Muller, Multiplicity codes and KMRZS
- 3 Our contribution
- 4 A dual view on Reed-Muller
- 5 Structure theorem for LCC
- 6 Rate amplification for LCC

#### Structure theorem for LCC

In the dual view on RM, we have

- 1 The point set  $P = \mathbb{F}_a^2$ .
- **2** With every  $p \in P$  we associated a distribution  $D_p$  over  $\mathbb{F}_q^P$  s.t.

$$\Pr_{f\sim D_p}[f(p)=0]=0.$$

Moreover,  $|f| = |\{p' \mid f(p') \neq 0\}| \leq q$ .

 $\forall p \neq p' \in P$ 

$$\Pr_{f \sim D_p}[f(p') \neq 0] \leq \frac{q-1}{q^2-1} = \frac{1}{q+1}.$$

4 dim Span $L \leq \frac{q(q+1)}{2}$  where  $L = \bigcup_{p \in P} \operatorname{supp}(D_p)$ .

#### Structure theorem for LCC

#### Definition (Dual LCC)

A  $(q, \tau, \rho)$ -Dual LCC is a family of distributions  $\mathcal{D} = \{D_p\}_{p \in P}$  s.t.

$$\forall p \in P$$

$$\Pr_{f \sim D_p}[f(p) = 0] = 0.$$

- 2  $\forall f \in L \quad |f| \leq q$ , where  $L = \bigcup_{p \in P} \operatorname{supp}(D_p)$
- $\forall p \neq p' \in P,$

$$\Pr_{f \sim D_p}[f(p') \neq 0] \leq \tau.$$

4 dim Span $L \leq (1-\rho)|P|$ .

## Structure theorem for LCC

#### Definition (Dual LCC)

A  $(q, \tau, \rho)$ -Dual LCC is a family of distributions  $\mathcal{D} = \{D_p\}_{p \in P}$  s.t.

- 1  $\Pr_{f \sim D_p}[f(p) = 0] = 0.$
- $|f| \le q$ .
- $Pr_{f \sim D_p}[f(p') \neq 0] \leq \tau.$
- 4 dim Span $L \leq (1 \rho)|P|$ .

We generalize the definition and allow L to contain further elements other than  $L_0 = \bigcup_p \text{supp} D_p$ .

#### Theorem (Informal)

C is a q-query linear LCC with distance  $d \iff C^{\perp}$  is a  $(q+1, \tau = \frac{q}{d}, \rho = \frac{1}{n} \dim C)$  dual LCC.

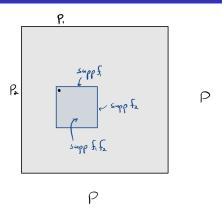
## Overview

- 1 Introduction
- 2 Reed-Muller, Multiplicity codes and KMRZS
- 3 Our contribution
- 4 A dual view on Reed-Muller
- 5 Structure theorem for LCC
- 6 Rate amplification for LCC

The natural way of amplifying the rate of an LCC is to tensor the corresponding dual LCC with itself.

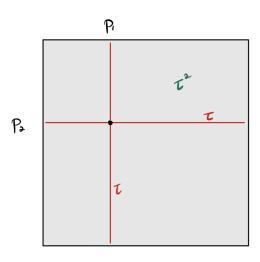
Given a  $(q, \tau, \rho)$ -Dual LCC  $(L, \mathcal{D})$  with  $L \subseteq \mathbb{F}^P$  we define  $(L', \mathcal{D}')$  as follows:

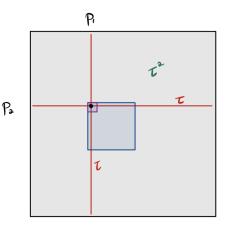
- The point set is  $P^2$ .
- $\mathcal{D}' = \{D'_{(p_1,p_2)} \mid (p_1,p_2) \in P^2\}$  where to sample  $f \sim D'_{p_1,p_2}$  we do the following:
  - 1 Sample  $f_1 \sim D_{p_1}$ ,  $f_2 \sim D_{p_2}$  independently.
  - 2 Output  $f_1 f_2$  that is defined by  $f_1 f_2(p'_1, p'_2) = f_1(p'_1) f_2(p'_2)$ .
- $L' \subseteq \mathbb{F}^{P^2}$  is the smallest subspace containing all functions supported by  $\mathcal{D}'$ .

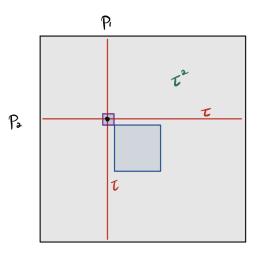


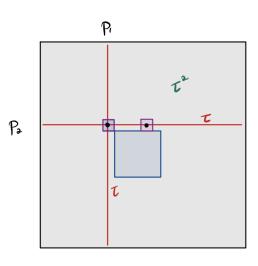
#### Claim

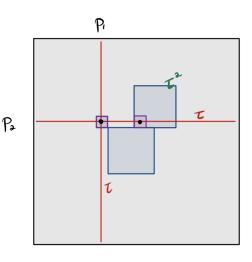
$$(L', \mathcal{D}')$$
 is a  $(q^2, \mathbf{\tau}, \rho')$ -Dual LCC with  $\rho' = 2\rho - \rho^2$ .



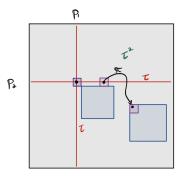








Let  $\pi: P^2 \to P^2$  be a matching. Adjoin  $\{e_p + e_{\pi(p)}\}_{p \in P^2}$  to L.



 $\pi$  should be "axis evasive": If  $\mathcal{X}_p$  is the set of points of distance 1 from p then

$$\forall p \neq p' \in P^2 \quad |\pi(\mathcal{X}_p) \cap \mathcal{X}_{p'}| \leq s.$$

More generally, one can consider a partition  $\pi$  of  $P^2$  s.t.

- 1 Each part has size c.
- $\forall p \neq p' \in P^2 \quad |\pi(\mathcal{X}_p) \cap \mathcal{X}_{p'}| \leq s.$

Using such a partition

$$\rho_{\text{new}} = 2\rho - \rho^2 - \frac{1}{c}$$

$$q_{\text{new}} = O(cq^3)$$

$$\tau_{\text{new}} = O(csq \cdot \tau^2).$$

Taking  $c = o(\frac{1}{\rho})$  and applying this for  $\approx \log \frac{1}{\rho}$  times yields a constant rate.

## Axis-evasive partitions

- A probabilistic argument only gives axis-evasive partitions for  $c = \Omega(\log |P|)$ , with s = c.
- We give an explicit construction for certain values of c, |P| with  $s = O(c^2)$ .
- More precisely, we require |P| = q to be a prime power and  $c + 1 \mid q^2 1$ .

## Axis-evasive partitions

- Identify  $\mathbb{F}_{q^2}$  with  $\mathbb{F}_q^2$ .
- Fix  $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ .
- Let  $\beta \in \mathbb{F}_{q^2}$  be an element of order c+1 in  $\mathbb{F}_{q^2}^{\times}$ .
- The partition is given by the quotient group  $\mathbb{F}_{a^2}^{\times}/\langle\beta\rangle$ .
- There are some technical conditions on  $\alpha, \beta$  that can always be met.

## Summary

#### This work was about

$$\mathsf{Bad}\;\mathsf{LC}\implies\mathsf{good}\;\mathsf{LC}$$

#### Future research

- 1 Construct a bad (but not so bad) LC.
- **2** Can it be that the current  $2^{O(\sqrt{\log n})}$  bound is tight?
- 3 Devise an improved distance amplification procedure for LCC.
- 4 Improve our rate amplification procedure.
- 5 Amplify rate under more general conditions.

Thank you!