
Pseudo-Random Pseudo-Distributions
(for Read-Once Branching Programs)

Gil Cohen
joint work with Mark Braverman and Sumegha Garg

December 16, 2019

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Outline

1 The BPL vs. L Problem

2 The B-Polynomial

3 Our Contribution

4 Nisan’s Construction

5 Some Ideas From Our Work

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The BPL vs. L Problem

The Problem

Derandomize with minimal overhead in space.

Given a randomized algorithm with space complexity S , devise a
deterministic algorithm with a comparable space complexity S ′.

Given how? Black-box access.

In the regime S(n) = Ω(log n), whether or not a derandomization
with constant overhead in space S ′ = O(S) is possible is the
BPL = L question.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The BPL vs. L Problem

The Problem

Derandomize with minimal overhead in space.

Given a randomized algorithm with space complexity S , devise a
deterministic algorithm with a comparable space complexity S ′.

Given how? Black-box access.

In the regime S(n) = Ω(log n), whether or not a derandomization
with constant overhead in space S ′ = O(S) is possible is the
BPL = L question.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The BPL vs. L Problem

The Problem

Derandomize with minimal overhead in space.

Given a randomized algorithm with space complexity S , devise a
deterministic algorithm with a comparable space complexity S ′.

Given how?

Black-box access.

In the regime S(n) = Ω(log n), whether or not a derandomization
with constant overhead in space S ′ = O(S) is possible is the
BPL = L question.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The BPL vs. L Problem

The Problem

Derandomize with minimal overhead in space.

Given a randomized algorithm with space complexity S , devise a
deterministic algorithm with a comparable space complexity S ′.

Given how? Black-box access.

In the regime S(n) = Ω(log n), whether or not a derandomization
with constant overhead in space S ′ = O(S) is possible is the
BPL = L question.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The BPL vs. L Problem

The Problem

Derandomize with minimal overhead in space.

Given a randomized algorithm with space complexity S , devise a
deterministic algorithm with a comparable space complexity S ′.

Given how? Black-box access.

In the regime S(n) = Ω(log n), whether or not a derandomization
with constant overhead in space S ′ = O(S) is possible is the
BPL = L question.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

What is known?

Savitch’s Theorem (1970) implies RL ⊆ L2.

Borodin-Cook-Pippenger (1983) established BPL ⊆ L2.

Nisan (1992, 94) proved that BPL ⊆ SC.

The state-of-the-art result concerning space only is due to Saks and
Zhou (1999) who proved BPL ⊆ L3/2.

The BPL vs. L problem has been studied extensively with a
fantastic array of results (e.g., Reingold’s SL = L (2005)). An
extensive pseudorandom machinery was developed motivated by this
problem (e.g., Impagliazzo-Nisan-Wigderson (1994),
Nisan-Zuckerman (1996), and Raz-Reingold (1999)).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Outline

1 The BPL vs. L Problem

2 The B-Polynomial

3 Our Contribution

4 Nisan’s Construction

5 Some Ideas From Our Work

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The B-Polynomial

Derandomization is typically executed using pseudorandom generators. In
our setting, the PRG are constructed for read-once branching programs.
We will take a somewhat different perspective on this.

Definition (The B-polynomial)

B(x̄ , ȳ) = 2−n
n∏

i=1

(xi + yi) ∈ R[x̄ , ȳ].

B has sparsity 2n with respect to the “natural” basis
M = {x1 · · · xn, x1 · · · xn−1yn, . . . , y1 · · · yn}.

We can think of B as encoding the uniform distribution over n-bit strings
by identifying the elements of M with n-bit strings and the coefficients
with the respective probabilities.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

The B-Polynomial

Derandomization is typically executed using pseudorandom generators. In
our setting, the PRG are constructed for read-once branching programs.
We will take a somewhat different perspective on this.

Definition (The B-polynomial)

B(x̄ , ȳ) = 2−n
n∏

i=1

(xi + yi) ∈ R[x̄ , ȳ].

B has sparsity 2n with respect to the “natural” basis
M = {x1 · · · xn, x1 · · · xn−1yn, . . . , y1 · · · yn}.

We can think of B as encoding the uniform distribution over n-bit strings
by identifying the elements of M with n-bit strings and the coefficients
with the respective probabilities.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Approximating the B-polynomial

Definition

A polynomial P(x̄ , ȳ) is said to (w , ε)-approximate B if for every
sequence of zero-one w × w stochastic matrices X1, . . . ,Xn,Y1, . . . ,Yn,
it holds that

‖B(X̄ , Ȳ)− P(X̄ , Ȳ)‖ ≤ ε.

Lemma (The Näıve Derandomization Lemma)

Let P be a polynomial that (w = n, ε = 1/3)-approximate B. Assume P
has the following properties:

Sparsity. P has sparsity s with respect to M; and

Explicitness. Every coefficient of P is computable in space O(log s).

Then, BPL ⊆ DSPACE(log s).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Approximating the B-polynomial

Definition

A polynomial P(x̄ , ȳ) is said to (w , ε)-approximate B if for every
sequence of zero-one w × w stochastic matrices X1, . . . ,Xn,Y1, . . . ,Yn,
it holds that

‖B(X̄ , Ȳ)− P(X̄ , Ȳ)‖ ≤ ε.

Lemma (The Näıve Derandomization Lemma)

Let P be a polynomial that (w = n, ε = 1/3)-approximate B. Assume P
has the following properties:

Sparsity. P has sparsity s with respect to M; and

Explicitness. Every coefficient of P is computable in space O(log s).

Then, BPL ⊆ DSPACE(log s).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Approximating the BPL polynomial

Theorem (easy)

For every n,w , ε ∃P ∈ R[x̄ , ȳ] with sparsity s = (nw/ε)O(1) that
(w , ε)-approximate B.

Had the explicitness condition been met, BPL = L.

Theorem (Nisan’92)

For every n,w , ε there exists an explicit polynomial P ∈ R[x̄ , ȳ] with
sparsity s = (nw/ε)O(log n) that (w , ε)-approximate B. As a corollary,
BPL ⊆ L2.

Nisan’s polynomial has all coefficients equal (to 1/s). This corresponds
to a pseudorandom distribution.

Despite much success studying restricted settings, there has been no
progress on improving Nisan’s PRG.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Approximating the BPL polynomial

Theorem (easy)

For every n,w , ε ∃P ∈ R[x̄ , ȳ] with sparsity s = (nw/ε)O(1) that
(w , ε)-approximate B.

Had the explicitness condition been met, BPL = L.

Theorem (Nisan’92)

For every n,w , ε there exists an explicit polynomial P ∈ R[x̄ , ȳ] with
sparsity s = (nw/ε)O(log n) that (w , ε)-approximate B. As a corollary,
BPL ⊆ L2.

Nisan’s polynomial has all coefficients equal (to 1/s). This corresponds
to a pseudorandom distribution.

Despite much success studying restricted settings, there has been no
progress on improving Nisan’s PRG.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Approximating the BPL polynomial

Theorem (easy)

For every n,w , ε ∃P ∈ R[x̄ , ȳ] with sparsity s = (nw/ε)O(1) that
(w , ε)-approximate B.

Had the explicitness condition been met, BPL = L.

Theorem (Nisan’92)

For every n,w , ε there exists an explicit polynomial P ∈ R[x̄ , ȳ] with
sparsity s = (nw/ε)O(log n) that (w , ε)-approximate B. As a corollary,
BPL ⊆ L2.

Nisan’s polynomial has all coefficients equal (to 1/s). This corresponds
to a pseudorandom distribution.

Despite much success studying restricted settings, there has been no
progress on improving Nisan’s PRG.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Approximating the BPL polynomial

Theorem (easy)

For every n,w , ε ∃P ∈ R[x̄ , ȳ] with sparsity s = (nw/ε)O(1) that
(w , ε)-approximate B.

Had the explicitness condition been met, BPL = L.

Theorem (Nisan’92)

For every n,w , ε there exists an explicit polynomial P ∈ R[x̄ , ȳ] with
sparsity s = (nw/ε)O(log n) that (w , ε)-approximate B. As a corollary,
BPL ⊆ L2.

Nisan’s polynomial has all coefficients equal (to 1/s). This corresponds
to a pseudorandom distribution.

Despite much success studying restricted settings, there has been no
progress on improving Nisan’s PRG.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Outline

1 The BPL vs. L Problem

2 The B-Polynomial

3 Our Contribution

4 Nisan’s Construction

5 Some Ideas From Our Work

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Our contribution

Theorem (Main result)

For every n,w , ε there exists an explicit polynomial P ∈ R[x̄ , ȳ] with
sparsity

s = (nw)Õ(log n) · (1/ε)O(log log(1/ε))

that (w , ε)-approximate B.

The polynomial we construct has positive as well as negative coefficients,
and these can be large in absolute value. Hence, the polynomial does not
correspond to a distribution but rather to what we call a
pseudo-distribution. This is perfectly fine for the purpose of
derandomization and we view this as a feature.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Our contribution

Theorem (Main result)

For every n,w , ε there exists an explicit polynomial P ∈ R[x̄ , ȳ] with
sparsity

s = (nw)Õ(log n) · (1/ε)O(log log(1/ε))

that (w , ε)-approximate B.

The polynomial we construct has positive as well as negative coefficients,
and these can be large in absolute value. Hence, the polynomial does not
correspond to a distribution but rather to what we call a
pseudo-distribution. This is perfectly fine for the purpose of
derandomization and we view this as a feature.

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Why care about ε?

At the end of the day, when applying the Näıve Derandomization Lemma,
we set ε = 1/3, so...

As we will see, the nlog n factor is due to the way the error is
aggregated, and so a better understanding of the error is crucial.

We observe that sparsity s = nlog n(w/ε)O(1) would yield
BPL ⊆ L4/3 via the Saks-Zhou framework. A conditional result of
Raz-Reingold gives s = (n/ε)log nwO(1) (in the white-box model).

Pseudo-random pseudo-distributions readily yield hitting sets
(suitable for derandomizing RL). Thus, our work gave the first
improved hitting set over Nisan’s in the general setting. A
substantially simpler construction was obtained afterwards by Hoza
and Zuckerman (2018).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Why care about ε?

At the end of the day, when applying the Näıve Derandomization Lemma,
we set ε = 1/3, so...

As we will see, the nlog n factor is due to the way the error is
aggregated, and so a better understanding of the error is crucial.

We observe that sparsity s = nlog n(w/ε)O(1) would yield
BPL ⊆ L4/3 via the Saks-Zhou framework. A conditional result of
Raz-Reingold gives s = (n/ε)log nwO(1) (in the white-box model).

Pseudo-random pseudo-distributions readily yield hitting sets
(suitable for derandomizing RL). Thus, our work gave the first
improved hitting set over Nisan’s in the general setting. A
substantially simpler construction was obtained afterwards by Hoza
and Zuckerman (2018).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Why care about ε?

At the end of the day, when applying the Näıve Derandomization Lemma,
we set ε = 1/3, so...

As we will see, the nlog n factor is due to the way the error is
aggregated, and so a better understanding of the error is crucial.

We observe that sparsity s = nlog n(w/ε)O(1) would yield
BPL ⊆ L4/3 via the Saks-Zhou framework. A conditional result of
Raz-Reingold gives s = (n/ε)log nwO(1) (in the white-box model).

Pseudo-random pseudo-distributions readily yield hitting sets
(suitable for derandomizing RL). Thus, our work gave the first
improved hitting set over Nisan’s in the general setting. A
substantially simpler construction was obtained afterwards by Hoza
and Zuckerman (2018).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Why care about ε?

At the end of the day, when applying the Näıve Derandomization Lemma,
we set ε = 1/3, so...

As we will see, the nlog n factor is due to the way the error is
aggregated, and so a better understanding of the error is crucial.

We observe that sparsity s = nlog n(w/ε)O(1) would yield
BPL ⊆ L4/3 via the Saks-Zhou framework. A conditional result of
Raz-Reingold gives s = (n/ε)log nwO(1) (in the white-box model).

Pseudo-random pseudo-distributions readily yield hitting sets
(suitable for derandomizing RL). Thus, our work gave the first
improved hitting set over Nisan’s in the general setting. A
substantially simpler construction was obtained afterwards by Hoza
and Zuckerman (2018).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Outline

1 The BPL vs. L Problem

2 The B-Polynomial

3 Our Contribution

4 Nisan’s Construction

5 Some Ideas From Our Work

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Nisan’s construction is recursive. Recall that

B(x̄ , ȳ) = 2−n
n∏

i=1

(xi + yi),

Factor B = BLBR , where

BL(x̄ , ȳ) = 2−n/2

n/2∏
i=1

(xi + yi),

BR(x̄ , ȳ) = 2−n/2
n∏

i=n/2+1

(xi + yi).

Say we recursively obtained PL,PR that ε(n/2)-approximate BL and BR ,
respectively, each having sparsity s(n/2).

How can we approximate the
product PLPR of approximations?

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Nisan’s construction is recursive. Recall that

B(x̄ , ȳ) = 2−n
n∏

i=1

(xi + yi),

Factor B = BLBR , where

BL(x̄ , ȳ) = 2−n/2

n/2∏
i=1

(xi + yi),

BR(x̄ , ȳ) = 2−n/2
n∏

i=n/2+1

(xi + yi).

Say we recursively obtained PL,PR that ε(n/2)-approximate BL and BR ,
respectively, each having sparsity s(n/2). How can we approximate the
product PLPR of approximations?

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Taking the näıve product PLPR will result in sparisty s(n/2)2 which will
get us nowhere.

Definition (Samplers (Bellare-Rompel 1994))

A bipartite graph G = (L,R,E) is an (ε, δ)-sampler if ∀f : R → [0, 1]
there is a set B ⊆ L of size at most |B| ≤ δ|L| such that ∀v ∈ L \ B,

|E[f (Γ(v))]− E[f (R)]| ≤ ε.

Theorem (Goldreich-Wigderson 1997)

For every integer n and ε, δ > 0 there exists an explicit (ε, δ)-sampler
with |L| = |R| = n and left degree 2d = O(ε−2δ−1).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Taking the näıve product PLPR will result in sparisty s(n/2)2 which will
get us nowhere.

Definition (Samplers (Bellare-Rompel 1994))

A bipartite graph G = (L,R,E) is an (ε, δ)-sampler if ∀f : R → [0, 1]
there is a set B ⊆ L of size at most |B| ≤ δ|L| such that ∀v ∈ L \ B,

|E[f (Γ(v))]− E[f (R)]| ≤ ε.

Theorem (Goldreich-Wigderson 1997)

For every integer n and ε, δ > 0 there exists an explicit (ε, δ)-sampler
with |L| = |R| = n and left degree 2d = O(ε−2δ−1).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Taking the näıve product PLPR will result in sparisty s(n/2)2 which will
get us nowhere.

Definition (Samplers (Bellare-Rompel 1994))

A bipartite graph G = (L,R,E) is an (ε, δ)-sampler if ∀f : R → [0, 1]
there is a set B ⊆ L of size at most |B| ≤ δ|L| such that ∀v ∈ L \ B,

|E[f (Γ(v))]− E[f (R)]| ≤ ε.

Theorem (Goldreich-Wigderson 1997)

For every integer n and ε, δ > 0 there exists an explicit (ε, δ)-sampler
with |L| = |R| = n and left degree 2d = O(ε−2δ−1).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Write PL = E[Li] and PR = E[Ri]. Take an (εS , δS)-sampler G with
s(n/2) vertices on each side, and define

PL •G PR = Ei

[
Li Ej∼Γ(i)Rj

]
.

R PR R -a- PR

J L . JR.

| •
G / =

"⇒ a
" ⇐ ↳ Rmi

's
' '

Ils IRS

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Lemma (The Derandomized Product Lemma)

For all zero-one w × w stochastic matrices X1, . . . ,Xn,Y1, . . . ,Yn,

‖(PL •G PR)(X̄ , Ȳ)− PL(X̄)PR(Ȳ)‖ = O((εS + δS)w).

Taking εS = δS ∼ 2−d and opening the recursion,

s(n) = s(n/2)2d = · · · = 2d log n,

ε(n) ≤ 2ε(n/2) + 2−dw = · · · = 2−dnw = ε,

and so s(n) = (nw/ε)O(log n).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Nisan’s construction

Lemma (The Derandomized Product Lemma)

For all zero-one w × w stochastic matrices X1, . . . ,Xn,Y1, . . . ,Yn,

‖(PL •G PR)(X̄ , Ȳ)− PL(X̄)PR(Ȳ)‖ = O((εS + δS)w).

Taking εS = δS ∼ 2−d and opening the recursion,

s(n) = s(n/2)2d = · · · = 2d log n,

ε(n) ≤ 2ε(n/2) + 2−dw = · · · = 2−dnw = ε,

and so s(n) = (nw/ε)O(log n).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Proof of the Derandomized Product Lemma

We will prove that ∀a1, . . . , as , b1, . . . , bs ∈ [0, 1] with Ei [ai] = α,
Ei [bi] = β, it holds that∣∣Ei

[
ai Ej∼Γ(i)bj

]
− αβ

∣∣ = O(εS + δS).

If i is “good” then bΓ(i) = Ej∼Γ(i)bj ∈ [β − εS , β + εS]. Thus,

Ei

[
aibΓ(i)

]
≤ Ei

[
aibΓ(i) | i good

]
+ Pr[i not good]

≤ (β + εS)Ei [ai | i good] + δS

≤ (β + εS)
α

1− δS
+ δS

= αβ + O(αεS + δS).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Proof of the Derandomized Product Lemma

We will prove that ∀a1, . . . , as , b1, . . . , bs ∈ [0, 1] with Ei [ai] = α,
Ei [bi] = β, it holds that∣∣Ei

[
ai Ej∼Γ(i)bj

]
− αβ

∣∣ = O(εS + δS).

If i is “good” then bΓ(i) = Ej∼Γ(i)bj ∈ [β − εS , β + εS]. Thus,

Ei

[
aibΓ(i)

]
≤ Ei

[
aibΓ(i) | i good

]
+ Pr[i not good]

≤ (β + εS)Ei [ai | i good] + δS

≤ (β + εS)
α

1− δS
+ δS

= αβ + O(αεS + δS).

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Outline

1 The BPL vs. L Problem

2 The B-Polynomial

3 Our Contribution

4 Nisan’s Construction

5 Some Ideas From Our Work

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

An Observation

The error term we got is O(αεS + δS). Can we exploit the α factor?

Well...

α is not small (either 1 or increasing with w , depending on the
choice of norm); Furthermore,

δS is not multiplied by α and has the same effect on the degree d .

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

An Observation

The error term we got is O(αεS + δS). Can we exploit the α factor?
Well...

α is not small (either 1 or increasing with w , depending on the
choice of norm); Furthermore,

δS is not multiplied by α and has the same effect on the degree d .

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Delta of samplers

Take two samplers GD and Gd with D � d .

P pL
R d D

a- 2 -s a- 2 -s

j k

/ •
a
.
- a. /!! = ! = if? his

" Y '

Y
-s.tzdhiRrdi.is + LIRR, Lik)

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Graded representations

P p Esg Esg En
L

R

si. gp.
Risk R.a.g.a.gl? p

÷
! .nl -

- ID.

"

"'

n .

"

IRS

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Product of graded representations

(t D ' ' D) .g. n fl D ' ' D)
i. ,

*
'II: '? ÷: I Did

a Inness"
Gil Cohen

Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

Outline

1 The BPL vs. L Problem

2 The B-Polynomial

3 Our Contribution

4 Nisan’s Construction

5 Some Ideas From Our Work

Gil Cohen
Pseudo-Random Pseudo-Distributions (for Read-Once Branching Programs)

	The BPL vs. L Problem
	The B-Polynomial
	Our Contribution
	Nisan's Construction
	Some Ideas From Our Work

