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The BPL vs. L Problem

The Problem

Derandomize with minimal overhead in space.

Given a randomized algorithm with space complexity S, devise a
deterministic algorithm with a comparable space complexity S’.

@ Given how? Black-box access.

@ In the regime S(n) = Q(log n), whether or not a derandomization
with constant overhead in space S’ = O(S) is possible is the
BPL = L question.
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Savitch’s Theorem (1970) implies RL C L2,
Borodin-Cook-Pippenger (1983) established BPL C L2.

Nisan (1992, 94) proved that BPL C SC.

The state-of-the-art result concerning space only is due to Saks and
Zhou (1999) who proved BPL C L3/2.

@ The BPL vs. L problem has been studied extensively with a
fantastic array of results (e.g., Reingold’s SL = L (2005)). An
extensive pseudorandom machinery was developed motivated by this
problem (e.g., Impagliazzo-Nisan-Wigderson (1994),
Nisan-Zuckerman (1996), and Raz-Reingold (1999)).
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The B-Polynomial

Derandomization is typically executed using pseudorandom generators. In
our setting, the PRG are constructed for read-once branching programs.
We will take a somewhat different perspective on this.
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The B-Polynomial

Derandomization is typically executed using pseudorandom generators. In
our setting, the PRG are constructed for read-once branching programs.
We will take a somewhat different perspective on this.

Definition (The B-polynomial)

B(x,7)=2"" H (xi + i) € R[%, 7].

B has sparsity 2" with respect to the “natural” basis
M = {X1~"Xn, X1 Xn—=1Yny- -+ }/1"'}/n}-

We can think of B as encoding the uniform distribution over n-bit strings
by identifying the elements of M with n-bit strings and the coefficients
with the respective probabilities.
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Approximating the B-polynomial

Definition

A polynomial P(X,y) is said to (w, €)-approximate B if for every
sequence of zero-one w X w stochastic matrices Xy,...,X,, Y1,..., Yo,
it holds that

IB(X,Y)—P(X,Y)| <e.
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Approximating the B-polynomial

A polynomial P(x,y) is said to (w, )-approximate B if for every
sequence of zero-one w X w stochastic matrices Xy,...,X,, Y1,..., Yo,
it holds that

IB(X,Y)—P(X,Y)| <e.

Lemma (The Naive Derandomization Lemma)

Let P be a polynomial that (w = n,e = 1/3)-approximate B. Assume P
has the following properties:

Sparsity. P has sparsity s with respect to M, and
Explicitness. Every coefficient of P is computable in space O(logs).
Then, BPL C DSPACE(log s).
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Approximating the BPL polynomial

Theorem (easy)

For every n,w, e 3P € R[%, y] with sparsity s = (nw/e)°(Y) that
(w, €)-approximate B.
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Had the explicitness condition been met, BPL = L.

Theorem (Nisan'92)

For every n,w, e there exists an explicit polynomial P € R[X, ¥] with
sparsity s = (nw/)C(°8") that (w, e)-approximate B. As a corollary,
BPL C L2

Nisan's polynomial has all coefficients equal (to 1/s). This corresponds
to a pseudorandom distribution.
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Approximating the BPL polynomial

Theorem (easy)

For every n,w, e 3P € R[%, y] with sparsity s = (nw/e)°(Y) that
(w, €)-approximate B.

Had the explicitness condition been met, BPL = L.

Theorem (Nisan'92)

For every n,w, e there exists an explicit polynomial P € R[X, ¥] with
sparsity s = (nw/)C(°8") that (w, e)-approximate B. As a corollary,
BPL C L2

Nisan's polynomial has all coefficients equal (to 1/s). This corresponds
to a pseudorandom distribution.

Despite much success studying restricted settings, there has been no
progress on improving Nisan's PRG.
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Our contribution

Theorem (Main result)

For every n,w, e there exists an explicit polynomial P € R[x, ¥] with
sparsity )
3= (nW)O(Iog n) . (1/5)O(Ioglog(1/a))

that (w, €)-approximate B.
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Our contribution

Theorem (Main result)

For every n,w, e there exists an explicit polynomial P € R[x, ¥] with
sparsity )
3= (nW)O(Iog n) . (1/5)O(Ioglog(1/a))

that (w, €)-approximate B.

The polynomial we construct has positive as well as negative coefficients,
and these can be large in absolute value. Hence, the polynomial does not
correspond to a distribution but rather to what we call a
pseudo-distribution. This is perfectly fine for the purpose of
derandomization and we view this as a feature.
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At the end of the day, when applying the Naive Derandomization Lemma,
we set e = 1/3, so...
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@ As we will see, the n'°8" factor is due to the way the error is
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Why care about €7

At the end of the day, when applying the Naive Derandomization Lemma,
we set e = 1/3, so...

@ As we will see, the n'°8" factor is due to the way the error is
aggregated, and so a better understanding of the error is crucial.
o We observe that sparsity s = n'°8"(w/e)°) would yield
BPL C L*/3 via the Saks-Zhou framework. A conditional result of
Raz-Reingold gives s = (n/£)"°¢"wO1) (in the white-box model).
@ Pseudo-random pseudo-distributions readily yield hitting sets
(suitable for derandomizing RL). Thus, our work gave the first
improved hitting set over Nisan's in the general setting. A

substantially simpler construction was obtained afterwards by Hoza
and Zuckerman (2018).
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Nisan's construction

Nisan's construction is recursive. Recall that

n

B(x.5) = 2" [ Ca+ ),

i=1
Factor B = B, Bgr, where

n/2
Bu(%,7) = 27" T] (xi + i),

i=1

Br(%,7) = "/21_[ Xi + i)-
i=n/2+1

Say we recursively obtained P, Pg that e(n/2)-approximate B, and Bg,
respectively, each having sparsity s(n/2).
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Nisan's construction

Nisan's construction is recursive. Recall that

B(x,y)=2""]] (x + ),
i=1
Factor B = B, Bgr, where

n/2
Bu(%,7) = 27" T] (xi + i),

i=1

Br(%,7) = "/21_[ Xi + i)-
i=n/2+1

Say we recursively obtained P, Pg that e(n/2)-approximate B, and Bg,
respectively, each having sparsity s(n/2). How can we approximate the
product P; Pg of approximations?
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Nisan's construction

Taking the naive product P, Pg will result in sparisty s(n/2)? which will
get us nowhere.
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Nisan's construction

Taking the naive product P, Pg will result in sparisty s(n/2)? which will
get us nowhere.

Definition (Samplers (Bellare-Rompel 1994))

A bipartite graph G = (L, R, E) is an (e, ¢)-sampler if Vf : R — [0, 1]
there is a set B C L of size at most |B| < §|L| such that Vv € L\ B,

B[f(F(v))] = E[f(R)]| <e.
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Nisan's construction

Taking the naive product P, Pg will result in sparisty s(n/2)? which will
get us nowhere.

Definition (Samplers (Bellare-Rompel 1994))

A bipartite graph G = (L, R, E) is an (e, ¢)-sampler if Vf : R — [0, 1]
there is a set B C L of size at most |B| < §|L| such that Vv € L\ B,

B[f(F(v))] = E[f(R)]| <e.

Theorem (Goldreich-Wigderson 1997)

For every integer n and €, > O there exists an explicit (e, §)-sampler
with |L| = |R| = n and left degree 2¢ = O(e72671).
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Nisan's construction

Write P, = E[L;] and Pg = E[R;]. Take an (es,ds)-sampler G with
s(n/2) vertices on each side, and define

P[_ (el PR = ]E,'[L,' ]Eer(,')Rj] .
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Nisan's construction

Lemma (The Derandomized Product Lemma)

For all zero-one w x w stochastic matrices Xy, ..., Xn, Y1,y Y,

I(PL o6 PR)(X,Y) = PL(X)Pr(Y)]| = O((es + ds)w).
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Nisan's construction

Lemma (The Derandomized Product Lemma)

For all zero-one w x w stochastic matrices Xy, ..., Xn, Y1,y Y,

I(PL o6 PR)(X,Y) = PL(X)Pr(Y)]| = O((es + ds)w).

Taking €5 = s ~ 2~ and opening the recursion,
s(n) = s(n/2)2? = ... = 2dlen
e(n) <2e(n/2)+27%w="-..=2"%%w =¢,

and so s(n) = (nw/g)Oeen),
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Proof of the Derandomized Product Lemma

We will prove that Vay,...,as, b1,..., bs € [0,1] with E;[a;] = «,
E;[bi] = B, it holds that

|E,‘ [a,- EJ-Nr(,-)bj] — aﬁ‘ = 0(65 + (55).
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Proof of the Derandomized Product Lemma

We will prove that Vay,...,as, b1,..., bs € [0,1] with E;[a;] = «,
E;[bi] = B, it holds that

{E [a, J~r()b] —aﬁ‘ 0(654—(55)

If i is “good” then br(jy = E; r(ib; € [ — €5, + €s]. Thus,

E; [aibr(;)] < E; [aibr;) | i good] + Pr[i not good]
< (B +¢es)E; [a; | i good] + ds
< (B+es)y -+ ds

=af+ O(asg —i— ds).
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An Observation

The error term we got is O(aes + Js). Can we exploit the a factor?
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An Observation

The error term we got is O(aes + Js). Can we exploit the a factor?
Well...

@ « is not small (either 1 or increasing with w, depending on the
choice of norm); Furthermore,

@ Js is not multiplied by o and has the same effect on the degree d.
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Delta of samplers

Take two samplers Gp and Gy with D > d.
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Graded representations
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Product of graded representations
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