Spectral Graph Theory

Winter 2020

Problem Set 2

Publish Date: November 10, 2020 Due Date: November 24, 2020

Problem 1. Let G be a connected graph. Prove the following claims (the items are independent):

- (a) $|\operatorname{Spec}(M_G)| \ge \operatorname{diam}(G) + 1$, where $\operatorname{diam}(G)$ is the diameter of G.
- (b) G is bipartite \iff Spec (M_G) is symmetric about 0.

Problem 2. Let G = (V, E) be graph, and let $G' = (V, E \cup \{e\})$ where $e \notin E$ is a new edge. Find the least constant c (independent of G, G') such that $\lambda_2(G') \leq \lambda_2(G) + c$. You do not need to prove the tightness of your constant c.

Problem 3. Let P be the characteristic polynomial of the adjacency matrix of a graph G. For $v \in V$ denote by P_v the characteristic polynomial of the adjacency matrix of the graph obtained by removing v from G. Prove that

$$P'(x) = \sum_{v \in V} P_v(x).$$

Problem 4. Let $G(\Gamma, S)$ be a Cayley graph over the group Γ and a set of generators S. Let $\chi : G \to \mathbb{C}^*$ be a character, and define the vector $v_{\chi}(g) = \chi(g)$.

- (a) Prove that v_{χ} is an eigenvector of M_G what is the corresponding eigenvalue?
- (b) Conclude that v_{χ} is an eigenvector of L_G what is the corresponding eigenvalue?
- (c) Prove that $\langle v_{\chi_1}, v_{\chi_2} \rangle = 0 \iff \chi_1 \neq \chi_2$.
- (d) Describe an orthogonal basis of real vectors (i.e. in \mathbb{R}^n) of eigenvectors of L_G .
- (e) Present $K_{n,n}$ as a Cayley graph and compute $\operatorname{Spec}(L_{K_{n,n}})$.

Problem 5. In this question you will construct a baby version of what we will later call an expander graph. We say that a graph G is a λ -spectral expander if λ_2 —the second smallest eigenvalue of the corresponding laplacian L_G —is at least λ . The typical goal in constructing expanders is the following: Given a degree bound d (e.g., d = 3), construct an infinite family of graphs each with maximal degree at most d, such that all graphs in the family are λ -spectral expanders for some constant $\lambda > 0$ (which may depend on d).

In this question you will construct a family of expanders, not quite with a constant degree, but nevertheless with a relatively slowly increasing degree as a function of the number of vertices. Your construction is going to be based on certain Cayley graphs.

To get you started, let p be a prime and $G(\Gamma, S)$ the Cayley graph where $\Gamma = \mathbb{Z}_p^3$ and $S = \{(b, ab, a^2b) \mid a, b \in \mathbb{Z}_p\}$.

- 1. What is λ_2 ?
- 2. Generalize the above construction to obtain, for infinitely many values of n, a graph on n vertices, maximal degree $d = O(\log^5 n)$, and $\lambda_2 \ge d^{3/4}$.