Introduction to Algebraic-Geometric Codes

Spring 2019

Exercise 5

Publish Date: 01 May 19

Due Date: 16 May 19

Exercise 5.1. Let A be a domain and $\langle 0 \rangle \neq I \in Spec(A)$.

- (a) Assume A is noetherian. Prove or disprove:
 - (i) A/I is noetharian.
 - (ii) A_I is noetharian.
- (b) Assume A is integrally closed. Prove or disprove:
 - (i) A/I is integrally closed.
 - (ii) A_I is integrally closed.
- (c) Assume $\dim(A) = k$.
 - (i) What can you say about $\dim(A/I)$? Prove your statement.
 - (ii) What can you say about $\dim(A_I)$? Prove your statement.
 - (iii) What can you say about $\dim(A/I) + \dim(A_I)$? Prove your statement.
- (d) According to all of the above, assume A is a Dedekind domain. Prove or disprove:
 - (i) A/I is a Dedekind domain.
 - (ii) A_I is a Dedekind domain.

Exercise 5.2. Let A be a PID. Prove that dim(A[x]) = 2.

Exercise 5.3. Let K be a field and let $f \in K[x,y]$ be an irreducible polynomial.

- (a) Assume that K is algebraically closed, what is the dimension of $K[x,y]/\langle f \rangle$?
- (b) Let $P \in Max(\overline{\mathsf{K}}[x,y])$. Show that $P \cap \mathsf{K}[x,y]$ is maximal.
- (c) What is the dimension of $K[x,y]/\langle f \rangle$?