Topics in Coding Theory: Locality and Interaction

Winter 2020

Exercise 1

Publish Date: November 05, 2019 Due Date: November 16, 2019

Exercise 1.1 Let $G \in M_{5\times 3}(\mathbb{F}_2)$:

$$G = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

And let C = Im(G) be the code generated by G.

- a) What is the rate of C?
- b) Find H, the parity check matrix of C.
- c) What is the distance of C?
- d) Find another generator matrix G_0 for the same code C that represents a systematic encoding; that is, so that the encoding map $x \to G_0 x$ has the form $(x_1, x_2, x_3) \to (x_1, x_2, x_3, a, b)$ for some $a, b \in \mathbb{F}_2$.

Exercise 1.2 Let $\{C_n\}_{n\in\mathbb{N}}$ be a family of binary codes with relative distance δ and relative rate ρ (that means that $\lim_{n\to\infty} \delta_n = \delta$, and $\lim_{n\to\infty} \rho_n = \rho$). Prove that $\rho + H(\frac{\delta}{2}) \leq 1$.

Exercise 1.3 Let \mathbb{F}_2 be the field with two elements. Denote by α an element that satisfy the polynomial equation $\alpha^2 + \alpha + 1 = 0$ over \mathbb{F}_2 . Denote by $\mathbb{F}_4 = \{a\alpha + b \mid a, b \in \mathbb{F}_2\}$.

- a) Prove that \mathbb{F}_4 is a field.
- b) Let $Tr(x) = x^2 + x \in \mathbb{F}_4[x]$. Show that Tr(x) is linear with respect to \mathbb{F}_2 elements, i.e. for every $a, b \in \mathbb{F}_2$, $\beta \in \mathbb{F}_4$ it holds that $Tr(a\beta + b) = aTr(\beta) + Tr(b)$.

 Deduce that for every $\beta \in \mathbb{F}_4$, $Tr(\beta) \in \mathbb{F}_2$.
- c) Let $\{R_i\}_{i\in\mathbb{N}}$ be a sequence of independent random variables, each is uniformly distributed over \mathbb{F}_4 except that R_1 is fixed to $R_1 = \alpha$. Let

$$S_k(x) = \sum_{i=1}^k R_{k+1-i} x_i,$$

where addition and multiplication are performed in \mathbb{F}_4 . We defined in class a tree code with a coloring function given by $T(x)_k = S_k(x)$. We proved that with a positive probability, this code has a distance that is bounded away from zero.

In this exercise we will show an alternative construction for a tree code. Show that the tree code defined with the following coloring function

$$T'(x)_k = \begin{cases} S_k(x), & k \equiv_2 0; \\ Tr(S_k(x)), & otherwise. \end{cases}$$

also has distance that is bounded away from 0, with positive probability.