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Graphs and their matrices

Unless otherwise stated, our graphs will always be finite and
undirected, sometimes simple, sometimes weighted.

We will use matrices in two different ways:

as an operator x 7→Mx; and

defining a quadratic form x 7→ xTMx =
∑

i ,j Mi ,jxixj .
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The adjacency matrix

Perhaps the most natural matrix associated with a graph G is its
adjacency matrix MG that is given by

MG (u, v) =

{
1, if (u, v) ∈ E

0, otherwise.

We index the rows and columns of MG by V .
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The adjacency matrix

The path graph
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The diffusion operator

The most natural operator associated with a graph G is probably
its diffusion operator.

Let DG be the diagonal matrix with DG (v , v) = deg v . For
weighted graphs, deg v is the sum of weights over edges incident
to v .

Assuming there are no isolated vertices, DG is invertible and we
define the diffusion operator by

WG = MGD
−1
G .

When G is d-regular then DG = dI and so WG = 1
dMG .
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The diffusion operator

Think of a vector p ∈ R specifying how much stuff there is at each
vertex. After one time step, the “distribution” of stuff is WGp.

One important example is when p is a probability distribution. The
operator WG then captures taking a random step.

Sometimes we will be interested in a lazy random walk
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The Laplacian

The Laplacian LG = DG −MG yields the most natural quadratic
form associated with a graph.

xTLGx =
∑
uv∈E

(x(u)− x(v))2.

This measures the “smoothness” of x across the edges of G .

To see this, note that the Laplacian of the graph connecting only
u, v is given by

Luv = (δ(u)− δ(v))(δ(u)− δ(v))T

=⇒ xTLuvx = xT (δ(u)− δ(v))(δ(u)− δ(v))Tx = (x(u)− x(v))2.

Then use linearity: LG =
∑

uv∈E Luv .
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Eigenvalues and eigenvectors

Recall that a nonzero vector ψ is an eigenvector of a matrix M
with eigenvalue λ if

Mψ = λψ.

Hence λ is an eigenvalue of M if

λI −M is singular;

λ is a root of the characteristic polynomial of M,
det(xI −M).
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Eigenvalues and eigenvectors

Let G be a graph. We think of a vector as a map ψ : V → R.

ψ is an eigenvector of MG with eigenvalue λ iff for every v ∈ V∑
uv∈E

ψ(u) = λ ·ψ(v).



Graphs and their matrices

Eigenvalues and eigenvectors

Every real (or even complex) matrix M has n eigenvalues in C,
counted with multiplicities. Sometimes, though, we will be short of
eigenvectors. Eigenvalues and eigenvectors are suitable for studying
symmetric matrices (or matrices similar to symmetric matrices).
Otherwise, one should consider singular values and singular vectors.

Theorem (The Spectral Theorem)

Let M be an n × n real, symmetric matrix. Then there exist
λ1, . . . , λn ∈ R (not necessarily distinct) and n mutually
orthogonal unit vectors ψ1, . . . ,ψn such that ψi is an eigenvector
of M of eigenvalue λi .
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Figure: Eigenvalues of the adjacency matrix M of the 30-vertex path
graph (largest is λ30 ∼ 1.989).
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Figure: Eigenvalues of the adjacency matrix M of the 30-vertex cycle.
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Figure: Who am I?
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Figure: Who am I?
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Figure: Adding a single edge
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Complete binary tree

Figure: Depth 5 (in edges) complete binary tree
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Interlacing of the Laplacian’s eigenvalue

Figure: Interlacing
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For a graph G we denote by

MG its adjacency matrix.

WG = MGD
−1
G its random walk matrix.

LG = DG −MG its Laplacian.

The eigenvalues are denoted by µi , ωi and λi , respectively.

For d-regular graphs

WG = 1
dMG and ωi = µi

d .

LG = dI −MG and λi = d − µi .
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