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Explicit Constructions of Expander Graphs

What are explicit constructions?

Explicit constructions

Definition

Let G be an undirected graph. We say that G is labelled if every
vertex labels its edges by 1, . . . , deg(v) with no repetitions.
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What are explicit constructions?

Definition

A graph G on n vertices is said to be weakly explicit if
generating the graph can be done in polynomial-time. That is,
if the entire graph can be constructed in time poly(n).

G labelled is strongly explicit if accessing any desired neighbor
of any vertex can be done in polynomial time. That is, there
is an algorithm that given v 2 V and i 2 [n], returns the i th

neighbor of v if i  deg(v), and ? otherwise. The running
time of the algorithm is poly(log n).
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Squaring

Squaring

Definition

Let G = (V ,E ) be an undirected d-regular graph. The square of
G , denoted by G 2 = (V ,E 0) is defined as follows. For (i , j) 2 [d ]2,
the (i , j)th neighbor of a vertex u is the j th neighbor of the i th

neighbor of u.

Observe that MG2 = M2
G and WG2 = W2

G . Thus, a random step
on G 2 is a length-2 random walk on G .
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Explicit Constructions of Expander Graphs

Squaring

Squaring

Claim

If G is (1� !)-spectral then G 2 is (1� !2)-spectral.

Note that �(G 2) = 2�(G )� �(G )2. Hence, when �(G ) is small, �
the spectral gap nearly doubles.
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Tensoring

Tensoring

Definition

Let x1 2 Rn1 , x2 2 Rn2 . We define the tensor product
x1 ⌦ x2 2 Rn1n2 of x1, x2 by

(x1 ⌦ x2)(i1,i2) = (x1)i1(x2)i2 .

What is (x1 ⌦ x2)T (y1 ⌦ y2)?
What is kx1 ⌦ x2k?

Remark. Not all vectors in Rn1n2 are of the form x⌦ y, though
the latter span the space. In particular,

{e(i)⌦ e(j) | (i , j) 2 [n1]⇥ [n2]}
is a basis for Rn1n2 .
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Explicit Constructions of Expander Graphs

Tensoring

Tensoring

Definition

Let A1 be an n1⇥ n1 matrix, and A2 an n2⇥ n2 matrix. The tensor
product A1 ⌦ A2 is the (n1n2)⇥ (n1n2) matrix that is defined by

(A1 ⌦ A2)(i1,i2),(j1,j2) = (A1)i1,j1(A2)i2,j2 .

Lemma

(A1 ⌦ A2)(x1 ⌦ x2) = (A1x1)⌦ (A2x2).

⇐
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Tensoring

Extra space for the proof
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Tensoring

Tensoring

Lemma

A1 ⌦ A2 = (In1 ⌦ A2)(A1 ⌦ In2) = (A1 ⌦ In2)(In1 ⌦ A2).
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Tensoring

Tensoring

What is I ⌦ J, J being the normalized all-ones matrix?

What is kA⌦ Bk?
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Explicit Constructions of Expander Graphs

Tensoring

Tensoring

Definition

Let G1 = (V1,E1) be a d1-regular labelled graph, and
G2 = (V2,E2) a d2-regular graph. Their tensor product is defined
by

G1 ⌦ G2 = (V1 ⇥ V2,E ),

as follows. The (i1, i2)th neighbor of (v1, v2) is (u1, u2) where u1 is
the i th1 neighbor of v1 in G1 and u2 is the i th2 neighbor of v2 in G2.
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Tensoring

Extra space for a drawing
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Tensoring

Tensoring

Observe that
MG1⌦G2 = MG1 ⌦MG2 .

We further have that

WG1⌦G2 = WG1 ⌦WG2 .

Thus, a random step on G1 ⌦ G2 consists of a pair of independent
random steps on G1 and G2.

⇐
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Tensoring

Tensoring

Lemma

If G1 is �1-spectral and G2 is �2-spectral then, G1 ⌦ G2 is
min(�1, �2)-spectral.
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Tensoring

The vector decomposition method

We will give a second proof for the lemma which will demonstrate
the “vector decomposition method”.

Given x ? un1n2 decompose it to x = x? + xk where xk is uniform
on each cloud and x? is orthogonal to un2 on every cloud.

More formally, xk = y ⌦ un2 for some y 2 Rn1 orthogonal to un1 ,
and

x? =
n1X

i=1

e(i)⌦ x?i

where each x?i is orthogonal to un2 .

÷
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Tensoring

The vector decomposition method

We first analyze the operator W1 ⌦W2 on xk.

(W1 ⌦W2)x
k = (W1 ⌦W2)(y ⌦ un2)

= (W1y)⌦ (W2un2)

= (W1y)⌦ un2 .

As y ? un2 ,

k(W1 ⌦W2)x
kk = k(W1y)⌦ un2k

= kW1ykkun2k
 !(G1)kykkun2k
= !(G1)ky ⌦ un2k
= !(G1)kxkk.
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Tensoring

The vector decomposition method

Next, we analyze the operator W1 ⌦W2 applied to x?.

(W1 ⌦W2)x
? = (W1 ⌦ In2)(In1 ⌦W2)x

?

= (W1 ⌦ In2)
n1X

i=1

(In1 ⌦W2)(e(i)⌦ x?i )

= (W1 ⌦ In2)
n1X

i=1

e(i)⌦ (W2x
?
i ).
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Tensoring

The vector decomposition method

Now,

���
n1X

i=1

e(i)⌦ (W2x
?
i )

���
2
=

n1X

i=1

ke(i)⌦ (W2x
?
i )k2

 !(G2)
2

n1X

i=1

ke(i)⌦ x?i k2

= !(G2)
2
���

n1X

i=1

e(i)⌦ x?i

���
2

= !(G2)
2kx?k2.

As kW1 ⌦ In2k  1, we conclude k(W1 ⌦W2)x?k  !(G2)kx?k.
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Tensoring

The vector decomposition method

Lastly, we observe that (W1 ⌦W2)x? is orthogonal to
(W1 ⌦W2)xk. Indeed,

(W1 ⌦W2)x
k = (W1y)⌦ un2 ,

and so it is uniform on each cloud, whereas

(W1 ⌦W2)x
? = (W1 ⌦ In2)

n1X

i=1

e(i)⌦ (W2x
?
i )

=
n1X

i=1

(W1e(i))⌦ (W2x
?
i )

which is orthogonal to un2 on each cloud.
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Tensoring

The vector decomposition method

Thus,

k(W1 ⌦W2)xk2 = k(W1 ⌦W2)(x
k + x?)k2

= k(W1 ⌦W2)x
kk2 + k(W1 ⌦W2)x

?k2

 !(G1)
2kxkk2 + !(G2)

2kx?k2

 max(!(G1)
2,!(G2)

2)kxk2.

Hence, !(G1 ⌦ G2)  max(!(G1),!(G2)).
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Tensoring
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Tensoring

Recap

To recap,

Number of vertices degree spectral gap

Squaring

Tensoring

Zig-Zag
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Explicit Constructions of Expander Graphs

The Zig-Zag product

The Zig-Zag product

Definition

Let G = (V ,E ) be a d-regular labelled undirected graph. An
edge-rotation map is a function ⇡ : V ⇥ [d ] ! V ⇥ [d ] such that
for every u, i , if ⇡(u, i) = (v , j) then the i th neighbor of u is v and
the j th neighbor of v is u.

We denote by ⇡̇(u, i) the first component of ⇡(u, i), namely, the
vertex alone.

Observe that ⇡ is an involution.
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Explicit Constructions of Expander Graphs

The Zig-Zag product

The Zig-Zag product

Definition

Let G be a d1 regular undirected graph on n1 vertices with
edge-rotation map ⇡G .

Let H be a d2 regular graph on d1 vertices with edge-rotation
map ⇡H .

The Zig-Zag product of G ,H, denoted by G �z H is the graph
whose vertex set is [n1]⇥ [d1]. For a, b 2 [d2], the (a, b)th neighbor
of vertex (u, i) is the vertex (v , j) computed as follows:

1 Let i 0 = ⇡̇H(i , a).

2 Let (v , j 0) = ⇡G (u, i 0).

3 Let j = ⇡̇H(j 0, b).
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The Zig-Zag product

Figure: The Zig-Zag product of the grid Z2 with the 4-cycle. Figure
shamelessly taken from the Hoory-Linial-Wigderson excellent survey
entitled “Expander Graphs and Their Applications”.
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Explicit Constructions of Expander Graphs

The Zig-Zag product

The Zig-Zag product - analysis

Theorem

If G is a �G -spectral expander and H a �H -spectral expander then
G �z H is a �2H�G -spectral expander.

Let P be the permutation (involution even) matrix with

P(u,i),(v ,j) =

(
1 ⇡G (u, i) = (v , j);

0 otherwise.

Let M̃H = In1 ⌦MH and denote by M the adjacency matrix of
G �z H.
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Claim (The never proven claim)

M = M̃HPM̃H .

The above claim is very intuitive and annoying to write down
formally. But, we will do so to practice our tensoring skills. To
prove the claim, first recall that, generally, if P is a permutation
matrix representing a permutation ⇡, namely,

Pa,b =

(
1 ⇡(a) = b;

0 otherwise,

then Pe(a) = e(⇡�1(a)). When P is an involution, we get
Pe(a) = e(⇡(a)).

T I MH



Explicit Constructions of Expander Graphs

The Zig-Zag product

The Zig-Zag product - the never proven claim

Lets spell out what is it we want to prove. We wish to show that
(M̃HPM̃H)(u,i),(v ,j) = 1 if and only if there exist a, b 2 [d2] such
that if we denote i 0 = ⇡̇H(i , a) and compute (v , j 0) = ⇡G (u, i 0)
then j = ⇡̇H(j 0, b). Now,

M̃He(u, i) = (In1 ⌦MH)(e(u)⌦ e(i))

= e(u)⌦ (MHe(i))

= e(u)⌦
d2X

a0=1

e(⇡̇H(i , a
0))

= e(u, i 0) + e(u)⌦ r,

where r(i 0) = 0.
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Now,

Pe(u, i 0) = e(⇡G (u, i
0)) = e(v , j 0),

whereas P(e(u)⌦ r) iz zero on all entries (v , ·).

Considering the third step,

M̃He(v , j
0) = e(v)⌦

d2X

b0=1

e(⇡̇H(j
0, b0))

= e(v , ⇡̇H(j
0, b)) + s

= e(v , j) + s

where s(v , j) = 0.
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Moreover, M̃HP(e(u)⌦ r) is also zero on (v , ·). Thus,
(M̃HPM̃H)(u,i),(v ,j) = 1 when a, b as above exist. The proof then

follows by a counting argument: the degree of M̃HPM̃H is d2
2 - the

same number of choices for a, b.

This proves the never proven claim (who now needs a new name).
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The Zig-Zag product

The Zig-Zag product - analysis

Going back to the analysis of the Zig-Zag product, we have that
M = M̃HPM̃H , and hence, by regularity,

W = W̃HPW̃H ,

where W is the random walk matrix of G �z H.

Recall that WH = �HJ+ !HEH where kEHk  1. Thus,

W̃H = In1 ⌦ (�HJ+ !HEH)

= �H J̃+ !H ẼH ,

where J̃ = In1 ⌦ J and ẼH = In1 ⌦ EH .
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The Zig-Zag product

The Zig-Zag product - analysis

Hence,

W̃ = �2H J̃PJ̃+ bE,

where
bE = �H!H

⇣
J̃PẼH + ẼHPJ̃

⌘
+ !2

H ẼHPẼH .

Note that kbEk  2�H!H + !2
H = 1� �2H .
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The Zig-Zag product

The Zig-Zag product - analysis

The key observation is that

Claim

J̃PJ̃ = WG ⌦ J.
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The Zig-Zag product

The Zig-Zag product - analysis

To recap,

W̃ = �2H(WG ⌦ J) + bE,

where kbEk  1� �2H . For every x ? 1,

kW̃xk  �2Hk(WG ⌦ J)xk+ kbExk
 �2H(1� �G ) + 1� �2H

= 1� �2H�G .
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The Zig-Zag product

Extra space for the proof
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The Zig-Zag product

Recap

To recap,

Number of vertices degree spectral gap

Squaring

Tensoring

Zig-Zag

i v

u ii ÷

it in



Explicit Constructions of Expander Graphs

Explicit construction of expanders

Weakly explicit construction

Let H be a d-regular 7
8 -spectral expander on d4 vertices.

Specifically, one can take the expander you constructed in the
problem set, based on Cayley graphs (alternatively, brute force
search).

We iteratively construct graphs G1,G2, . . . where

G1 = H2

Gt+1 = G 2
t �z H.

Proposition

For every t, Gt is a d2-regular 1
2 -spectral expander on d4t vertices.
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Explicit construction of expanders

Extra space for the proof
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Explicit construction of expanders

Fully explicit, yet scarce, construction

Iteratively construct graphs G1,G2, . . . where

G1 = H2

Gt+1 = (Gt ⌦ Gt)
2�z H.

Though now we take H to be on d8 vertices.

zt

d
'

r Nf
-

- D

← ←
d

at-4

in
NEED

=

ne
'

Tft ) = 2T(A GtkcgnlE- Gee
,
--GIDH

T

① i
'
'

- utca

;¥÷;??)¥c⇐"edge-rot G
= . . . =

IGE NE NE, odd f- logbg .

=hx.si#.,.,e-n--@YtEn



Explicit Constructions of Expander Graphs

Explicit construction of expanders

Extra space for the proof
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Explicit construction of expanders

Fully explicit construction

The downside of the above suggestion is that the family is rather
scarce. To overcome this, consider the variant in which

G1 = H2

Gt+1 = (Gdt/2e ⌦ Gbt/2c)
2�z H.

Here the number of vertices increases only exponentially with t (as
opposed to double-exponentially) though the recursive relation
regarding time improves from

T (t) = 2T (t � 1) + (log n)O(1)

to about
T (t) = 2T (t/2) + (log n)O(1).
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Explicit construction of expanders

How close to Ramanujan do we get?

How close to Ramanujan do we get? The degree is D = d2 and H
is a d-regular graph. By taking H Ramanujan, we get
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In the unit after the next one, we will improve this to
O(1/D1/2�o(1)).


