Spectral Graph Sparsification Following Spielman, Chapters 32,33.

Gil Cohen

January 11, 2021

Overview

- 1 The Loewner order
- 2 Spectral approximation
- 3 Resistor networks
- 4 A probabilistic proof of a near-linear sized sparsifiers
- 5 Linear Sized Sparsifiers

The Loewner (partial) order

Recall from the problem set.

Definition

Let \mathbf{A}, \mathbf{B} be $n \times n$ symmetric matrices. We write $\mathbf{A} \succcurlyeq \mathbf{B}$ if $\mathbf{A} - \mathbf{B}$ is PSD (which recall we write as $\mathbf{A} - \mathbf{B} \succcurlyeq 0$).

It is best to first consider the definition for diagonal matrices A, B. Note that $A \succcurlyeq B$ iff $A_{i,i} \ge B_{i,i}$ for all $i \in [n]$.

A useful property that will allow us to prove a more general statement is

The Loewner order and eigenvalues

Assume **A**, **B** have a common basis of eigenvectors, with corresponding eigenvalues $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n , respectively. Then.

$$\mathbf{A} \succcurlyeq \mathbf{B} \iff \forall i \in [n] \ \alpha_i \ge \beta_i.$$

Assume $\alpha_1 \ge \cdots \ge \alpha_n$ are the eigenvalues of **A**, and $\beta_1 \ge \cdots \ge \beta_n$ the eigenvalues of **B**. Then,

$$\mathbf{A} \succcurlyeq \mathbf{B} \implies \forall i \in [n] \ \alpha_i \ge \beta_i$$

even under no assumption on the eigenvectors. The other direction is (generally) false.

Loewner order and the spectral norm

Claim

For every symmetric matrix A,

$$\frac{\|\mathbf{A}\| \leq c}{\Leftrightarrow} \iff -c \leq \alpha_n \leq \alpha_1 \leq c \\
\Leftrightarrow -c\mathcal{I} \preccurlyeq \mathbf{A} \preccurlyeq c\mathcal{I}.$$

$$||\mathbf{A}|| \leq ||\mathbf{A}|| \leq ||\mathbf{A}|| \leq c$$

Recall that if \mathbf{W} is the random walk matrix of G, then G is a $(1-\omega)$ -spectral expander iff $\|\mathbf{W}-\mathbf{J}\|\leq \omega$. This is equivalent to

$$-\omega \mathcal{I} \preccurlyeq \mathbf{W} - \mathbf{J} \preccurlyeq \omega \mathcal{I}.$$

An equivalent formulation, focusing on the normalized Laplacian is the following multiplicative-type statement.

$$(1-\omega)(\mathcal{I}-\mathbf{J}) \preccurlyeq \mathcal{I}-\mathbf{W} \preccurlyeq (1+\omega)(\mathcal{I}-\mathbf{J}).$$

Overview

- 1 The Loewner order
- 2 Spectral approximation
- 3 Resistor networks
- 4 A probabilistic proof of a near-linear sized sparsifiers
- 5 Linear Sized Sparsifiers

Spectral approximation

Definition

Let G, H be graphs on n vertices.

- We write $G \succcurlyeq H$ if $\mathbf{L}_G \succcurlyeq \mathbf{L}_H$.
- We say that H an ε -spectral approximation of G if

$$(1-\varepsilon)\mathbf{L}_G \preccurlyeq \mathbf{L}_H \preccurlyeq (1+\varepsilon)\mathbf{L}_G.$$

Spectral approximation is a strong notion. It implies closeness of

- conductances,
- eigenvalues,
- effective resistances.

Expanders as spectral approximators of the complete graph

For every $\varepsilon>0$ there exists $c=c(\varepsilon)$ such that for every n there exists a graph G with at most cn edges that ε -approximates the complete graph with self loops. In particular, Ramanujan graphs achieve $c=O(1/\varepsilon^2)$.

Can we spectral-approximate every graph with a sparse graph?

Theorem

neighted

For every $\varepsilon > 0$ and every (undirected) graph G on n vertices there exists a weighted graph H with $O(n/\varepsilon^2)$ edges that ε -spectral approximates G.

Overview

- 1 The Loewner order
- 2 Spectral approximation
- 3 Resistor networks
- 4 A probabilistic proof of a near-linear sized sparsifiers
- 5 Linear Sized Sparsifiers

Resistor networks and leverage scores

In the recitations we viewed graphs as resistor networks. In particular, the effective resistance between two vertices a, b was defined to be the voltage difference $\mathbf{v}(a) - \mathbf{v}(b)$ when flowing one unit of current to a and out of b ($\mathbf{i} = \mathbf{e}(a) - \mathbf{e}(b)$).

$$\mathsf{R}_{\mathsf{eff}}(a,b) = (\mathbf{e}(a) - \mathbf{e}(b))^{\mathsf{T}} \mathbf{L}^{+} (\mathbf{e}(a) - \mathbf{e}(b)).$$

Definition

The leverage score of an edge e is defined by $\ell_e = w_e R_{eff}(e)$.

We proved that ℓ_e is the probability edge e will be included in a random spanning tree (suitably sampled according to the weights).

Overview

- 1 The Loewner order
- 2 Spectral approximation
- 3 Resistor networks
- 4 A probabilistic proof of a near-linear sized sparsifiers
- 5 Linear Sized Sparsifiers

A probabilistic proof of a weaker statement

Theorem

For every $\varepsilon > 0$ and every weighted graph G on n vertices there exists a weighted graph H with $O(n\log(n)/\varepsilon^2)$ edges that ε -spectral approximates G.

Algorithm. For a parameter c to be set later on, include each edge e of G to H independently with probability $p_e = c\ell_e$ and set its weight to be $w_H(e) = w_G(e)/p_e$.

There is a technical issue - an edge e might have $p_e > 1$ (as c will be chosen larger than 1). To solve this we split every edge e to several edges (which does not affect the Laplacian).

Note, the above algorithm can be thought of as taking the union of c uniformly sampled MST (though not quite).

We first show that the graph is sparse in expectation.

$$\mathbb{E}[|E_H|] = \sum_e p_e = c \sum_e \ell_e.$$

Recall that

$$\ell_e = \Pr_T[e \in T] = \mathbb{E}_T[\mathbf{1}_{e \in T}].$$

Thus,

$$\sum_{e} \ell_{e} = \sum_{e} \mathbb{E}_{T}[\mathbf{1}_{e \in T}] = \mathbb{E}_{T} \left[\sum_{e} \mathbf{1}_{e \in T} \right] = n - 1.$$

Thus, $\mathbb{E}[|E_H|] = c(n-1)$. By the Chernoff bound, except with probability, $\exp(-cn)$, we have $|E_H| \le 2cn$.

As for the Laplacian,

$$\mathbb{E}[\mathbf{L}_H] = \mathbb{E}\left[\sum_e w_H(e)\mathbf{L}_e\right] = \sum_e \mathbb{E}[w_H(e)]\mathbf{L}_e.$$

Now.

$$\mathbb{E}[w_H(e)] = p_e \cdot \frac{w_G(e)}{p_e} = w_G(e),$$

and so

$$\mathbb{E}[\mathsf{L}_H] = \sum_e w_G(e) \mathsf{L}_e = \mathsf{L}_G.$$

For a symmetric matrix **A** let $\alpha_{\min}(\mathbf{A})$, $\alpha_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues of **A**, respectively.

Theorem (Matrix Chernoff Bound)

nxa

Let $\mathbf{X}_1, \ldots, \mathbf{X}_m$ be independent random PSD matrices of bounded norm $\|\mathbf{X}_i\| \le r$ for all $i \in [m]$. Let $\mathbf{X} = \sum_{i=1}^m \mathbf{X}_i$ and denote $\bar{\alpha}_{min} = \alpha_{min}(\mathbb{E}[\mathbf{X}])$, $\bar{\alpha}_{max} = \alpha_{max}(\mathbb{E}[\mathbf{X}])$. Then, for every $\varepsilon > 0$,

$$\Pr[\alpha_{min}(\mathbf{X}) \leq (1-\varepsilon)\bar{\alpha}_{min}] \leq n \cdot \exp(-\varepsilon^2\bar{\alpha}_{min}/3r),$$

$$\Pr[\alpha_{max}(\mathbf{X}) \geq (1+\varepsilon)\bar{\alpha}_{max}] \leq n \cdot \exp(-\varepsilon^2\bar{\alpha}_{max}/3r).$$

Consider the matrix

$$\mathbf{X} = \mathbf{L}_{C}^{+/2} \mathbf{L}_{H} \mathbf{L}_{C}^{+/2}$$

LG= Z 2: 4:4.

We have that

$$\mathbb{E}[\mathbf{X}] = \mathbb{E}[\mathbf{L}_G^{+/2}\mathbf{L}_H\mathbf{L}_G^{+/2}] = \mathbf{L}_G^{+/2}\mathbb{E}[\mathbf{L}_H]\mathbf{L}_G^{+/2} = \mathbf{L}_G^{+/2}\mathbf{L}_G\mathbf{L}_G^{+/2} = \mathbf{\Pi},$$

where, note, Π is the projection to the image of L_G .

We wish to apply the Chernoff bound but Π has 0 as an eigenvalue, rendering the (lower) Chernoff bound ineffective. To get around this technicality, we work in the image of Π .

Let ψ_1, \ldots, ψ_n be an orthonormal basis of \mathbb{R}^n composed of eigenvectors of \mathbf{L}_G with corresponding eigenvalues $0 = \mu_1 < \mu_2 < \cdots < \mu_n$. So,

$$\mathbf{L}_G = \sum_{i=2}^n \mu_i \boldsymbol{\psi}_i \boldsymbol{\psi}_i^{\mathsf{T}}.$$

Let **B** be the $n \times (n-1)$ matrix with column $i \in [n-1]$ equal ψ_{i+1} . Note that

$$\Pi = \mathsf{L}_G^{+/2} \mathsf{L}_G \mathsf{L}_G^{+/2} = \underbrace{\downarrow_{h}^{h f'}}_{h} \psi_h^T \quad \forall i \in \mathcal{I}_G$$

$$\mathcal{I}_{n-1} = \mathbf{B}^T \Pi \mathbf{B}.$$

For applying Chernoff, it will be convenient to write

$$\mathbf{B}^{T}\mathbf{X}\mathbf{B} = \sum_{e} \mathbf{B}^{T}\mathbf{X}_{e}\mathbf{B},$$

$$\mathbf{L}_{e} = \mathbf{L}_{a}\mathbf{I} = \begin{pmatrix} \delta(a) - J(5) \end{pmatrix} \begin{pmatrix} J(a) - J(5) \end{pmatrix}^{T}$$

$$\mathbf{X}_{e} = \begin{cases} \frac{w_{e}}{p_{e}} \mathbf{L}_{G}^{+/2} \mathbf{L}_{e} \mathbf{L}_{G}^{+/2} & \text{with probability } p_{e} \\ 0 & \text{with probability } 1 - p_{e}, \end{cases}$$

where

and we recall

$$\mathbb{E}[\mathbf{B}^T \mathbf{X} \mathbf{B}] = \mathbf{B}^T \mathbb{E}[\mathbf{X}] \mathbf{B} = \mathbf{B}^T \mathbf{\Pi} \mathbf{B} = \mathcal{I}_{n-1}.$$

We turn to bound the norm of $\mathbf{B}^T \mathbf{X}_{a,b} \mathbf{B}$. For that it suffices to bound the norm of $\mathbf{X}_{a,b}$.

$$\|\mathbf{L}_{G}^{+/2}\mathbf{L}_{a,b}\mathbf{L}_{G}^{+/2}\| = \|\mathbf{L}_{G}^{+/2}(\mathbf{e}(a) - \mathbf{e}(b))(\mathbf{e}(a) - \mathbf{e}(b))^{T}\mathbf{L}_{G}^{+/2}\|$$

$$= ((\mathbf{e}(a) - \mathbf{e}(b))^{T}\mathbf{L}_{G}^{+/2})(\mathbf{L}_{G}^{+/2}(\mathbf{e}(a) - \mathbf{e}(b)))$$

$$= (\mathbf{e}(a) - \mathbf{e}(b))^{T}\mathbf{L}_{G}^{+}(\mathbf{e}(a) - \mathbf{e}(b))$$

$$= \mathsf{R}_{\mathsf{eff}}(a,b).$$

Recall that

$$p_{a,b} = c\ell_{a,b} = cw_{a,b}\mathsf{R}_{\mathsf{eff}}(a,b),$$
 and so $\|\mathbf{B}^T\mathbf{X}_{a,b}\mathbf{B}\| \leq \|\mathbf{X}_{a,b}\| \leq \frac{1}{c}.$

By the matrix Chernoff bound, except with probability $2n \cdot \exp(-c\varepsilon^2/3)$, we have that

$$1 - \varepsilon \le \alpha_{\min}(\mathbf{B}^T \mathbf{X} \mathbf{B}) \le \alpha_{\max}(\mathbf{B}^T \mathbf{X} \mathbf{B}) \le 1 + \varepsilon.$$

$$(1 - \varepsilon)\mathcal{I}_{n-1} \le \mathbf{B}^T \mathbf{X} \mathbf{B} \le (1 + \varepsilon)\mathcal{I}_{n-1}.$$

Hence.

$$(1-\varepsilon)\mathcal{I}_{n-1} \preccurlyeq \mathbf{B}^{\mathsf{T}} \mathbf{X} \mathbf{B} \preccurlyeq (1+\varepsilon)\mathcal{I}_{n-1}.$$

Note $BB^T = \Pi$. Hitting with **B** and B^T from the left and right, respectively, we conclude

$$(1-\varepsilon)\Pi \preceq \Pi X\Pi \preceq (1+\varepsilon)\Pi$$
.

As
$$\mathbf{X} = \mathbf{L}_{G}^{+/2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/2}$$
 and since $\mathbf{\Pi} \mathbf{L}_{G}^{+/2} = \mathbf{L}_{G}^{+/2} = \mathbf{L}_{G}^{+/2} \mathbf{\Pi}$,

$$\mathbf{\Pi} \mathbf{X} \mathbf{\Pi} = \mathbf{\Pi} \mathbf{L}_{G}^{+/2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/2} \mathbf{\Pi} = \mathbf{L}_{G}^{+/2} \mathbf{L}_{H} \mathbf{L}_{G}^{+/2}.$$

Thus.

$$(1-\varepsilon)\Pi \preccurlyeq \mathsf{L}_G^{+/2}\mathsf{L}_H\mathsf{L}_G^{+/2} \preccurlyeq (1+\varepsilon)\Pi.$$

Hitting by $\mathbf{L}_{C}^{1/2}$ on the left and right,

$$(1-\varepsilon)\mathsf{L}_{G} \preccurlyeq \mathsf{\Pi}\mathsf{L}_{H}\mathsf{\Pi} \preccurlyeq (1+\varepsilon)\mathsf{L}_{G},$$

from which it follows that

$$(1-\varepsilon)\mathbf{L}_G \preccurlyeq \mathbf{L}_H \preccurlyeq (1+\varepsilon)\mathbf{L}_G$$
.

To conclude the proof, we need to choose c such that, say, $2n \cdot \exp(-c\varepsilon^2/3) < 1/2$. We thus take $c = O(\log(n)/\varepsilon^2)$. Hence, $|E_H| \le O(n\log(n)/\varepsilon^2)$.

Overview

- 1 The Loewner order
- 2 Spectral approximation
- 3 Resistor networks
- 4 A probabilistic proof of a near-linear sized sparsifiers
- 5 Linear Sized Sparsifiers

Linear Sized Sparsifiers

As in the previous section, we consider

where

$$\psi_{ab} = \sqrt{w_{ab}} \mathbf{L}_G^{+/2} (\mathbf{e}(a) - \mathbf{e}(b))$$

Linear Sized Sparsifiers

Thus, it suffices to solve the following problem. Given $\varepsilon > 0$ and vectors $\psi_1, \ldots, \psi_m \in \mathbb{R}^n$ in isotropic position

$$\sum_{i=1}^m \psi_i \psi_i^{\mathcal{T}} = \mathcal{I},$$

find a subset $S \subseteq [m]$, of size $|S| = s = O(n/\varepsilon^2)$, and weights $(c_i)_{i \in S}$ such that

$$(1-\varepsilon)\mathcal{I} \preccurlyeq \sum_{i\in S} c_i \psi_i \psi_i^{\mathsf{T}} \preccurlyeq (1+\varepsilon)\mathcal{I}.$$

Proof strategy

The algorithm for computing S and the weights is iterative. At iteration $j=1,\ldots,s$, an element ψ_{i_i} will be added to S $(i_i \in [m])$ with a suitable weight c_i . An element may be chosen more than once.

We will maintain the invariant that for every j, the matrix

satisfies
$$\mathbf{A}_{j} = \sum_{k=1}^{j} c_{k} \psi_{i_{k}} \psi_{i_{k}}^{T}$$

$$\sum_{k=1}^{j} c_{k} \psi_{i_{k}} \psi_{i_{k}}^{T}$$
 for some parameters $c_{k} \psi_{i_{k}} \psi_{i_{k}}^{T}$

for some parameters $\lambda, v > 0$.

Tracking only the smallest and largest eigenvalues does not seem to carry sufficient amount of information. Instead, the key idea is to record a suitably chosen potential function of all eigenvalues.

Let **A** be an $n \times n$ symmetric matrix with eigenvalues $\alpha_1 \leq \cdots \leq \alpha_n$. We define the upper and lower barrier functions

$$\Phi^{u}(\mathbf{A}) = \sum_{i=1}^{n} \frac{1}{u - \alpha_{i}} = \operatorname{Tr}\left(\left(u\mathbf{I} - \mathbf{A}\right)^{-1}\right),$$

$$\Phi_{\ell}(\mathbf{A}) = \sum_{i=1}^{n} \frac{1}{\alpha_{i} - \ell} = \mathsf{Tr}\left((\mathbf{A} - \ell \mathcal{I})^{-1}\right).$$

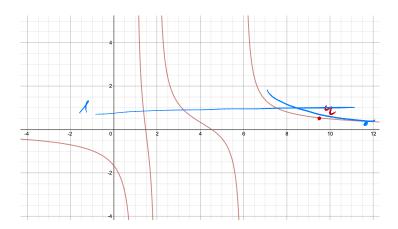


Figure: The upper barrier function with $(\alpha_1, \alpha_2, \alpha_3) = (1, 2, 6)$.

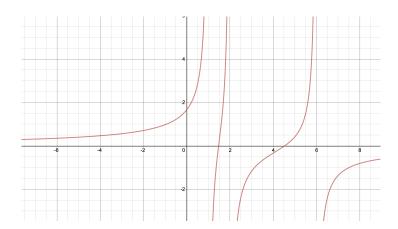


Figure: The lower barrier function with $(\alpha_1, \alpha_2, \alpha_3) = (1, 2, 6)$.

Note that for every $u > \alpha_n$ and $\ell < \alpha_1$,

$$\alpha_n \leq u - \frac{1}{\Phi^u(\mathbf{A})}$$
 $\alpha_1 \geq \ell + \frac{1}{\Phi_\ell(\mathbf{A})}.$

Instead of only considering α_{\min} , α_{\max} , we maintain an invariant on the barrier functions. For $j=0,1,\ldots,s$, we define

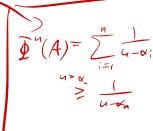
$$u_{j} = n + vj$$

$$\ell_{j} = -n + \lambda j,$$

and maintain the invariant

$$\Phi^{u_j}(\mathbf{A}_j) \leq 1,$$

 $\Phi_{\ell}(\mathbf{A}_i) < 1$



Initialization

Initially, we set $S = \emptyset$, and so $\mathbf{A}_0 = 0$. Hence,

$$\Phi^{u_0}(\mathbf{A}_0) = \sum_{i=1}^n \frac{1}{u_0} = \frac{n}{u_0} = 1,$$

$$\Phi_{\ell_0}(\mathbf{A}_0) = \sum_{i=1}^n \frac{1}{-\ell_0} = -\frac{n}{\ell_0} = 1.$$

How does the upper barrier function changes under a rank one update? This you resolved in the problem set. In particular, you proved

Lemma (Sherman-Morrison)

Let **B** be a nonsingular symmetric matrix. Let $\psi \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then,

$$(\mathbf{B} - c\psi\psi^{\mathsf{T}})^{-1} = \mathbf{B}^{-1} + \frac{c}{1 - c\psi^{\mathsf{T}}\mathbf{B}^{-1}\psi} \cdot \mathbf{B}^{-1}\psi\psi^{\mathsf{T}}\mathbf{B}^{-1}$$

Substituting $\mathbf{B} = u\mathcal{I} - \mathbf{A}$, we get

$$\begin{split} \Phi^u(\mathbf{A} + c\psi\psi^T) &= \mathsf{Tr}\left((u\mathcal{I} - \mathbf{A} - c\psi\psi^T)^{-1}\right) \\ &= \mathsf{Tr}\left((u\mathcal{I} - \mathbf{A})^{-1}\right) + \Delta(u) \\ &= \Phi^u(\mathbf{A}) + \Delta(u), \end{split}$$

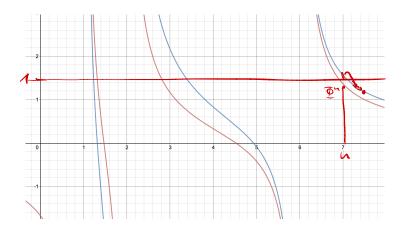
where

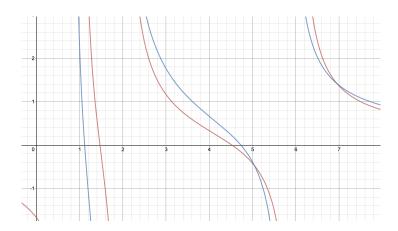
$$\begin{split} \Delta(u) &= \frac{c}{1 - c\psi^T (u\mathcal{I} - \mathbf{A})^{-1}\psi} \cdot \mathsf{Tr} \left((u\mathcal{I} - \mathbf{A})^{-1}\psi\psi^T (u\mathcal{I} - \mathbf{A})^{-1} \right) \\ &= \frac{c\psi^T (u\mathcal{I} - \mathbf{A})^{-2}\psi}{1 - c\psi^T (u\mathcal{I} - \mathbf{A})^{-1}\psi} = \frac{\psi^T (u\mathcal{I} - \mathbf{A})^{-2}\psi}{1/c - \psi^T (u\mathcal{I} - \mathbf{A})^{-1}\psi}. \end{split}$$

The upper potential function thus increases under a rank one update by $\Delta(u)$. We want to counteract this increase by increasing u. Namely, we want to be able to choose ψ_{i_i}, c_i such that

$$\Phi^{u_j}(\mathbf{A}_j) \geq \Phi^{u_j+v}(\mathbf{A}_j + c_j \psi_{i_j} \psi_{i_j}^T).$$

We compute
$$\Phi^{u+v}(\mathbf{A} + c\psi\psi^T) - \Phi^u(\mathbf{A}) = \Phi^{u+v}(\mathbf{A} + c\psi\psi^T) - \Phi^{u+v}(\mathbf{A}) + \Phi^{u+v}(\mathbf{A}) - \Phi^u(\mathbf{A}) = \Delta(u+v) + \Phi^{u+v}(\mathbf{A}) - \Phi^u(\mathbf{A}).$$





Recall that

Thus, it suffices to have

$$\frac{1}{c} \ge \psi^{T} ((u+v)\mathcal{I} - \mathbf{A})^{-1} \psi + \psi^{T} ((u+v)\mathcal{I} - \mathbf{A})^{-2} \psi$$

$$= \psi^{T} \mathbf{U}_{\mathbf{A}} \psi,$$

where

$$\mathbf{U}_{\mathbf{A}} = ((u+v)\mathcal{I} - \mathbf{A})^{-1} + \frac{((u+v)\mathcal{I} - \mathbf{A})^{-2}}{\Phi^{u}(\mathbf{A}) - \Phi^{u+v}(\mathbf{A})}.$$

Thus, we have found a clean condition that imply we can add ψ to S with weight c by increasing u by v and without increasing the upper barrier function. We summarize this in the following claim.

Claim

$$\frac{1}{c} \geq \psi^T \mathbf{U}_{\mathbf{A}} \psi \quad \Longrightarrow \quad \Phi^{u+v}(\mathbf{A} + c \psi \psi^T) \leq \Phi^u(\mathbf{A}). \leq \mathbf{A}^{u+v}(\mathbf{A} + c \psi \psi^T) \leq \Phi^u(\mathbf{A}).$$

The lower barrier functions

Define

$$\mathbf{L}_{\mathcal{A}} = \frac{(\mathbf{A} - (\ell + \lambda)\mathcal{I})^{-2}}{\Phi_{\ell+\lambda}(\mathbf{A}) - \Phi_{\ell}(\mathbf{A})} - (\mathbf{A} - (\ell + \lambda)\mathcal{I})^{-1}.$$

Similar to the previous claim, one can show

Claim

$$rac{1}{c} \leq \psi^T \mathsf{L}_{\mathsf{A}} \psi \quad \Longrightarrow \quad \Phi_{\ell+\lambda}(\mathsf{A} + c \psi \psi^T) \leq \Phi_{\ell}(\mathsf{A}).$$

It remains to show that there exist ψ_i and a weight c such that

$$\Phi^{u+v}(\mathbf{A} + c\psi_i\psi_i^T) \leq \Phi^u(\mathbf{A}),$$

$$\Phi_{\ell+\lambda}(\mathbf{A} + c\psi_i\psi_i^T) \leq \Phi_{\ell}(\mathbf{A}).$$

By the two claims, it suffices to prove that there exists $i \in [m]$ such that

$$\psi_i^T \mathbf{U}_{\mathbf{A}} \psi_i \leq \psi_i^T \mathbf{L}_{\mathbf{A}} \psi_i.$$

We can then take any weight c in between. By an averaging argument, it suffices to prove that

We first prove the following claim.

Claim

For every matrix B,

$$\sum_{i=1}^{m} \psi_i^{\mathsf{T}} \mathsf{B} \psi_i = \mathsf{Tr}(\mathsf{B}).$$

As
$$\psi^T \mathbf{B} \psi = \text{Tr}(\psi^T \mathbf{B} \psi) = \text{Tr}(\psi \psi^T \mathbf{B})$$
, we have

$$\sum_{i=1}^{m} \psi_i^T \mathbf{B} \psi_i = \sum_{i=1}^{m} \mathsf{Tr}(\psi_i \psi_i^T \mathbf{B}) = \mathsf{Tr}\left(\left(\sum_{i=1}^{m} \psi_i \psi_i^T\right) \mathbf{B}\right) = \mathsf{Tr}(\mathbf{B}).$$

Recall,

$$\mathbf{U}_{\mathbf{A}} = ((u+v)\mathcal{I} - \mathbf{A})^{-1} + \frac{((u+v)\mathcal{I} - \mathbf{A})^{-2}}{\Phi^{u}(\mathbf{A}) - \Phi^{u+v}(\mathbf{A})}.$$

Claim

$$\sum_{i=1}^{m} \psi_{i}^{T} \mathbf{U}_{\mathbf{A}} \psi_{i} \leq \frac{1}{v} + \Phi^{u}(\mathbf{A}).$$

By the previous claim,

$$\sum_{i=1}^{m} \psi_{i}^{T} \mathbf{U}_{\mathbf{A}} \psi_{i} = \operatorname{Tr}(\mathbf{U}_{\mathbf{A}}) = \Phi^{u+v}(\mathbf{A}) + \frac{\operatorname{Tr}\left(((u+v)\mathcal{I} - \mathbf{A})^{-2}\right)}{\Phi^{u}(\mathbf{A}) - \Phi^{u+v}(\mathbf{A})}.$$

Now, as we consider $u \geq \alpha_{\max}(\mathbf{A})$, we have $\Phi^{u+v}(\mathbf{A}) \leq \Phi^u(\mathbf{A})$. As for the second term,

$$\frac{\partial}{\partial u} \Phi^{u}(\mathbf{A}) = -\sum_{i=1}^{m} \frac{1}{(u - \alpha_{i})^{2}} = -\operatorname{Tr}\left((u\mathcal{I} - \mathbf{A})^{-2}\right).$$

By convexity,

$$\frac{\Phi^{u+v}(\mathbf{A}) - \Phi^{u}(\mathbf{A})}{v} \leq \frac{\partial}{\partial u} \Phi^{u+v}(\mathbf{A}).$$

$$\mathbf{\mathcal{D}}^{\mathbf{A}}(\mathbf{A})$$

Hence,

$$\frac{\mathsf{Tr}\left(((u+v)\mathcal{I}-\mathsf{A})^{-2}\right)}{\Phi^u(\mathsf{A})-\Phi^{u+v}(\mathsf{A})}\leq \frac{1}{v}$$

Similarly, one can prove that

$$\sum_{i=1}^{m} \psi_{i}^{\mathsf{T}} \mathbf{L}_{\mathbf{A}} \psi_{i} \geq \frac{1}{\lambda} - \frac{1}{\frac{1}{\Phi_{\ell}(\mathbf{A})} - \lambda}.$$

Try to prove that by yourself. This time, the analog of the statement $\Phi^{u+v}(\mathbf{A}) > \Phi^u(\mathbf{A})$ for all $u > \alpha_{\max}(\mathbf{A})$ is a bit trickier, and is given by the following claim.

Claim

For every $\ell < \alpha_{min}(\mathbf{A})$ and $\lambda < 1/\Phi_{\ell}(\mathbf{A})$, it holds that

$$\Phi_{\ell+\lambda}(\mathbf{A}) \leq rac{1}{rac{1}{\Phi_{\ell}(\mathbf{A})} - \lambda}.$$

Setting the parameters

By the above, we can take any υ,λ such that

for all $j = 0, 1, \ldots, s = cn$. Recall,

$$\alpha_{\max}(\mathbf{A}_s) \leq u_s - \frac{1}{\Phi^{u_s}(\mathbf{A}_s)} = n + vcn - \frac{1}{\Phi^{u_s}(\mathbf{A}_s)} \leq (vc + 1)n - 1,$$

$$\alpha_{\min}(\mathbf{A}_s) \geq \ell_s + \frac{1}{\Phi_{\ell_s}(\mathbf{A}_s)} = -n + \lambda cn + \frac{1}{\Phi_{\ell_s}(\mathbf{A}_s)} \geq (\lambda c - 1)n + 1.$$

Setting the parameters

By our invariant, we can take any v, λ for which

$$\frac{1}{v} + 1 \le \frac{1}{\lambda} - \frac{1}{1 - \lambda}.$$

For every such choice, we have

$$\frac{\alpha_{\max}(\mathbf{A}_s)}{\alpha_{\min}(\mathbf{A}_s)} \leq \frac{n + \nu c n - 1}{-n + \lambda c n + 1} \leq \frac{\nu c + 1}{\lambda c - 1}. \sim \frac{\mathcal{D}}{\mathcal{D}}$$

Setting the parameters

The example presented in Spielman considers $\lambda=\frac{1}{3}$ which leads us to take $\nu=2$. Setting, say, c=13 yields a ratio of 13. By dividing all weights by $\sqrt{13}$ we get

$$\frac{1}{\sqrt{13}}\mathsf{L}_{G} \preccurlyeq \mathsf{L}_{H} \preccurlyeq \sqrt{13}\mathsf{L}_{G}$$

You are encouraged to play with the numbers to improve the ratio.