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Spectral Graph Sparsification

The Loewner order

The Loewner (partial) order

Recall from the problem set.

Definition

Let A,B be n⇥ n symmetric matrices. We write A<B if A�B is

PSD (which recall we write as A� B< 0).

It is best to first consider the definition for diagonal matrices A,B.
Note that A<B i↵ Ai ,i � Bi ,i for all i 2 [n].

A useful property that will allow us to prove a more general

statement is

A<B =) CTAC<CTBC for all C .
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Spectral Graph Sparsification

The Loewner order

The Loewner order and eigenvalues

Assume A,B have a common basis of eigenvectors, with

corresponding eigenvalues ↵1, . . . ,↵n and �1, . . . ,�n, respectively.
Then,

A<B () 8i 2 [n] ↵i � �i .

Assume ↵1 � · · · � ↵n are the eigenvalues of A, and
�1 � · · · � �n the eigenvalues of B. Then,

A<B =) 8i 2 [n] ↵i � �i

even under no assumption on the eigenvectors. The other direction

is (generally) false.
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Spectral Graph Sparsification

The Loewner order

Loewner order and the spectral norm

Claim

For every symmetric matrix A,

kAk  c () �c  ↵n  ↵1  c

() �cI 4A4 cI.

Recall that if W is the random walk matrix of G , then G is a

(1� !)-spectral expander i↵ kW � Jk  !. This is equivalent to

�!I 4W � J4!I.
An equivalent formulation, focusing on the normalized Laplacian is

the following multiplicative-type statement.

(1� !)(I � J)4I �W4 (1 + !)(I � J).
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Spectral Graph Sparsification

Spectral approximation

Spectral approximation

Definition

Let G ,H be graphs on n vertices.

We write G <H if LG <LH .

We say that H an "-spectral approximation of G if

(1� ")LG 4LH 4 (1 + ")LG .

Spectral approximation is a strong notion. It implies closeness of

conductances,

eigenvalues,

e↵ective resistances.
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Spectral approximation

Expanders as spectral approximators of the complete graph

For every " > 0 there exists c = c(") such that for every n there

exists a graph G with at most cn edges that "-approximates the

complete graph with self loops. In particular, Ramanujan graphs

achieve c = O(1/"2).

Can we spectral-approximate every graph with a sparse graph?

Theorem

For every " > 0 and every (undirected) graph G on n vertices there
exists a weighted graph H with O(n/"2) edges that "-spectral
approximates G .

feign the
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Spectral Graph Sparsification

Resistor networks

Resistor networks and leverage scores

In the recitations we viewed graphs as resistor networks. In

particular, the e↵ective resistance between two vertices a, b was

defined to be the voltage di↵erence v(a)� v(b) when flowing one

unit of current to a and out of b (i = e(a)� e(b)).

Re↵(a, b) = (e(a)� e(b))TL+(e(a)� e(b)).

Definition

The leverage score of an edge e is defined by `e = weRe↵(e).

We proved that `e is the probability edge e will be included in a

random spanning tree (suitably sampled according to the weights).
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Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement

Theorem

For every " > 0 and every weighted graph G on n vertices there
exists a weighted graph H with O(n log(n)/"2) edges that
"-spectral approximates G .

Algorithm. For a parameter c to be set later on, include each

edge e of G to H independently with probability pe = c`e and set

its weight to be wH(e) = wG (e)/pe .

There is a technical issue - an edge e might have pe > 1 (as c will

be chosen larger than 1). To solve this we split every edge e to

several edges (which does not a↵ect the Laplacian).

Note, the above algorithm can be thought of as taking the union

of c uniformly sampled MST (though not quite).
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Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

We first show that the graph is sparse in expectation.

E[|EH |] =
X

e

pe = c
X

e

`e .

Recall that

`e = Pr
T

[e 2 T ] = ET [1e2T ].

Thus,

X

e

`e =

X

e

ET [1e2T ] = ET

"
X

e

1e2T

#
= n � 1.

Thus, E[|EH |] = c(n � 1). By the Cherno↵ bound, except with

probability, exp(�cn), we have |EH |  2cn.
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A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

As for the Laplacian,

E[LH ] = E
"
X

e

wH(e)Le

#
=

X

e

E[wH(e)]Le .

Now,

E[wH(e)] = pe ·
wG (e)

pe
= wG (e),

and so

E[LH ] =
X

e

wG (e)Le = LG .
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A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

For a symmetric matrix A let ↵min(A),↵max(A) denote the

smallest and largest eigenvalues of A, respectively.

Theorem (Matrix Cherno↵ Bound)

Let X1, . . . ,Xm be independent random PSD matrices of bounded
norm kXik  r for all i 2 [m]. Let X =

P
m

i=1Xi and denote
↵̄min = ↵min(E[X]), ↵̄max = ↵max(E[X]). Then, for every " > 0,

Pr[↵min(X)  (1� ")↵̄min]  n · exp (�"2↵̄min/3r),

Pr[↵max(X) � (1 + ")↵̄max]  n · exp (�"2↵̄max/3r).
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Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

Consider the matrix

X = L+/2
G

LHL
+/2
G

We have that

E[X] = E[L+/2
G

LHL
+/2
G

] = L+/2
G

E[LH ]L+/2
G

= L+/2
G

LGL
+/2
G

= ⇧,

where, note, ⇧ is the projection to the image of LG .

We wish to apply the Cherno↵ bound but ⇧ has 0 as an

eigenvalue, rendering the (lower) Cherno↵ bound ine↵ective. To

get around this technicality, we work in the image of ⇧.
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Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

Let  1, . . . , n be an orthonormal basis of Rn
composed of

eigenvectors of LG with corresponding eigenvalues

0 = µ1 < µ2  · · ·  µn. So,

LG =

nX

i=2

µi i 
T

i .

Let B be the n ⇥ (n � 1) matrix with column i 2 [n � 1] equal

 i+1. Note that

⇧ = L+/2
G

LGL
+/2
G

=

nX

i=2

 i 
T

i

and that

In�1 = BT
⇧B.

n ÷

eiiiiineiii
'

i'"
no ,



Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

For applying Cherno↵, it will be convenient to write

BTXB =

X

e

BTXeB,

where

Xe =

(
we

pe
L+/2
G

LeL
+/2
G

with probability pe

0 with probability 1� pe ,

and we recall

E[BTXB] = BTE[X]B = BT⇧B = In�1.

Le -- Las = ( Rai - RGD Local-Nd'T



Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

We turn to bound the norm of BTXa,bB. For that it su�ces to

bound the norm of Xa,b.

��L+/2
G

La,bL
+/2
G

�� =
��L+/2

G
(e(a)� e(b))(e(a)� e(b))TL+/2

G

��

=

⇣
(e(a)� e(b))TL+/2

G

⌘⇣
L+/2
G

(e(a)� e(b))
⌘

= (e(a)� e(b))TL+
G
(e(a)� e(b))

= Re↵(a, b).

Recall that

pa,b = c`a,b = cwa,bRe↵(a, b),

and so kBTXa,bBk  kXa,bk  1
c
.

←I
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A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

By the matrix Cherno↵ bound, except with probability

2n · exp(�c"2/3), we have that

1� "  ↵min(B
TXB)  ↵max(B

TXB)  1 + ".

Hence,

(1� ")In�14BTXB4 (1 + ")In�1.

Note BBT
= ⇧. Hitting with B and BT

from the left and right,

respectively, we conclude

(1� ")⇧4⇧X⇧4 (1 + ")⇧.

stat'4th.
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Spectral Graph Sparsification

A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

As X = L+/2
G

LHL
+/2
G

and since ⇧L+/2
G

= L+/2
G

= L+/2
G

⇧,

⇧X⇧ = ⇧L+/2
G

LHL
+/2
G

⇧ = L+/2
G

LHL
+/2
G

.

Thus,

(1� ")⇧4L+/2
G

LHL
+/2
G

4 (1 + ")⇧.

Hitting by L1/2
G

on the left and right,

(1� ")LG 4⇧LH⇧4 (1 + ")LG ,

from which it follows that

(1� ")LG 4LH 4 (1 + ")LG .
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A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

To conclude the proof, we need to choose c such that, say,

2n · exp(�c"2/3) < 1/2. We thus take c = O(log(n)/"2). Hence,

|EH |  O(n log(n)/"2).
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Spectral Graph Sparsification

Linear Sized Sparsifiers

Linear Sized Sparsifiers

As in the previous section, we consider

⇧ = L+/2
G

LGL
+/2
G

= L+/2
G

 
X

ab2E
wabLab

!
L+/2
G

=

X

ab2E
wabL

+/2
G

(e(a)� e(b))(e(a)� e(b))TL+/2
G

=

X

ab2E
 T

ab
 ab,

where

 ab =
p
wabL

+/2
G

(e(a)� e(b))

N T
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Linear Sized Sparsifiers

Linear Sized Sparsifiers

Thus, it su�ces to solve the following problem. Given " > 0 and

vectors  1, . . . , m 2 Rn
in isotropic position

mX

i=1

 i 
T

i = I,

find a subset S ✓ [m], of size |S | = s = O(n/"2), and weights

(ci )i2S such that

(1� ")I 4
X

i2S
ci i 

T

i 4 (1 + ")I.
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Linear Sized Sparsifiers

Proof strategy

The algorithm for computing S and the weights is iterative. At

iteration j = 1, . . . , s, an element  ij
will be added to S (ij 2 [m])

with a suitable weight cj . An element may be chosen more than

once.

We will maintain the invariant that for every j , the matrix

Aj =

jX

k=1

ck ik
 T

ik

satisfies

�n + �j  ↵min(Aj)  ↵max(Aj)  n + �j .

for some parameters �, � > 0.
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Spectral Graph Sparsification

Linear Sized Sparsifiers

The barrier functions

Tracking only the smallest and largest eigenvalues does not seem

to carry su�cient amount of information. Instead, the key idea is

to record a suitably chosen potential function of all eigenvalues.

Let A be an n ⇥ n symmetric matrix with eigenvalues

↵1  · · ·  ↵n. We define the upper and lower barrier functions

�
u
(A) =

nX

i=1

1

u � ↵i

= Tr
�
(uI � A)�1

�
,

�`(A) =
nX

i=1

1

↵i � `
= Tr

�
(A� `I)�1

�
.
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Linear Sized Sparsifiers

The barrier functions

Figure: The upper barrier function with (↵1,↵2,↵3) = (1, 2, 6).
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Linear Sized Sparsifiers

The barrier functions

Figure: The lower barrier function with (↵1,↵2,↵3) = (1, 2, 6).
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Linear Sized Sparsifiers

The barrier functions

Note that for every u > ↵n and ` < ↵1,

↵n  u � 1

�u(A)
↵1 � `+

1

�`(A)
.

Instead of only considering ↵min,↵max, we maintain an invariant on

the barrier functions. For j = 0, 1, . . . , s, we define

uj = n + �j

`j = �n + �j ,

and maintain the invariant

�
uj (Aj)  1,

�`j (Aj)  1.

↳÷÷÷÷.
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Linear Sized Sparsifiers

Initialization

Initially, we set S = ;, and so A0 = 0. Hence,

�
u0(A0) =

nX

i=1

1

u0
=

n

u0
= 1,

�`0(A0) =

nX

i=1

1

�`0
= � n

`0
= 1.
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Linear Sized Sparsifiers

The upper barrier functions

How does the upper barrier function changes under a rank one

update? This you resolved in the problem set. In particular, you

proved

Lemma (Sherman-Morrison)

Let B be a nonsingular symmetric matrix. Let  2 Rn and c 2 R.
Then,

(B� c  T
)
�1

= B�1
+

c

1� c TB�1 
· B�1  TB�1

⇐ .¥
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Linear Sized Sparsifiers

The upper barrier functions

Substituting B = uI � A, we get

�
u
(A+ c  T

) = Tr

⇣
(uI � A� c  T

)
�1
⌘

= Tr
�
(uI � A)�1

�
+�(u)

= �
u
(A) +�(u),

where

�(u) =
c

1� c T (uI � A)�1 
· Tr

⇣
(uI � A)�1  T

(uI � A)�1
⌘

=
c T

(uI � A)�2 

1� c T (uI � A)�1 
=

 T
(uI � A)�2 

1/c � T (uI � A)�1 
.

/

EYAK Tr(GI - A )
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Linear Sized Sparsifiers

The upper barrier functions

The upper potential function thus increases under a rank one

update by �(u). We want to counteract this increase by increasing

u. Namely, we want to be able to choose  ij
, cj such that

�
uj (Aj) � �

uj+�
(Aj + cj ij

 T

ij
).

We compute

�
u+�

(A+ c  T
)� �

u
(A) = �

u+�
(A+ c  T

)� �
u+�

(A)

+ �
u+�

(A)� �
u
(A)

= �(u + �) + �
u+�

(A)� �
u
(A).

⇒
17

an
L

OZ

•
←
°



Spectral Graph Sparsification

Linear Sized Sparsifiers

The barrier functions

^
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Linear Sized Sparsifiers

The barrier functions
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Linear Sized Sparsifiers

The upper barrier functions

Recall that

�(u + �) =
 T

((u + �)I � A)�2 

1/c � T ((u + �)I � A)�1 
.

Thus, it su�ces to have

1

c
�  T

((u + �)I � A)�1 +
 T

((u + �)I � A)�2 

�u(A)� �u+�(A)

=  TUA ,

where

UA = ((u + �)I � A)�1
+

((u + �)I � A)�2

�u(A)� �u+�(A)
.

Etat -I
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Linear Sized Sparsifiers

The upper barrier functions

Thus, we have found a clean condition that imply we can add  to

S with weight c by increasing u by � and without increasing the

upper barrier function. We summarize this in the following claim.

Claim

1

c
�  TUA =) �

u+�
(A+ c  T

)  �
u
(A).El
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Linear Sized Sparsifiers

The lower barrier functions

Define

LA =
(A� (`+ �)I)�2

�`+�(A)� �`(A)
� (A� (`+ �)I)�1.

Similar to the previous claim, one can show

Claim

1

c
  TLA =) �`+�(A+ c  T

)  �`(A). El
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Linear Sized Sparsifiers

The inductive argument

It remains to show that there exist  i and a weight c such that

�
u+�

(A+ c i 
T

i )  �
u
(A),

�`+�(A+ c i 
T

i )  �`(A).

By the two claims, it su�ces to prove that there exists i 2 [m]

such that

 T

i UA i   T

i LA i .

We can then take any weight c in between. By an averaging

argument, it su�ces to prove that

mX

i=1

 T

i UA i 
mX

i=1

 T

i LA i .Tr (UH =
= Tr (La )
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Linear Sized Sparsifiers

The inductive argument

We first prove the following claim.

Claim

For every matrix B,

mX

i=1

 T

i B i = Tr(B).

As  TB = Tr( TB ) = Tr(  TB), we have

mX

i=1

 T

i B i =

mX

i=1

Tr( i 
T

i B) = Tr

  
mX

i=1

 i 
T

i

!
B

!
= Tr(B).

Ii
.
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Linear Sized Sparsifiers

The inductive argument

Recall,

UA = ((u + �)I � A)�1
+

((u + �)I � A)�2

�u(A)� �u+�(A)
.

Claim

mX

i=1

 T

i UA i 
1

�
+ �

u
(A).

By the previous claim,

mX

i=1

 T

i UA i = Tr(UA) = �
u+�

(A) +
Tr
�
((u + �)I � A)�2

�

�u(A)� �u+�(A)
.

O
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Linear Sized Sparsifiers

The inductive argument

Now, as we consider u � ↵max(A), we have �
u+�

(A)  �
u
(A). As

for the second term,

@

@u
�
u
(A) = �

mX

i=1

1

(u � ↵i )
2
= �Tr

�
(uI � A)�2

�
.

By convexity,

�
u+�

(A)� �
u
(A)

�
 @

@u
�
u+�

(A).

Hence,

Tr
�
((u + �)I � A)�2

�

�u(A)� �u+�(A)
 1

�
.

*
+
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Linear Sized Sparsifiers

The inductive argument

Similarly, one can prove that

mX

i=1

 T

i LA i �
1

�
� 1

1
�`(A)

� �
.

Try to prove that by yourself. This time, the analog of the

statement �
u+�

(A) > �
u
(A) for all u > ↵max(A) is a bit trickier,

and is given by the following claim.

Claim

For every ` < ↵min(A) and � < 1/�`(A), it holds that

�`+�(A) 
1

1
�`(A)

� �
.
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Linear Sized Sparsifiers

Setting the parameters

By the above, we can take any �,� such that

1

�
+ �

uj (Aj) 
1

�
� 1

1
�`j

(Aj )
� �

for all j = 0, 1, . . . , s = cn. Recall,

↵max(As)  us �
1

�us (As)
= n + �cn � 1

�us (As)
 (�c + 1)n � 1,

↵min(As) � `s +
1

�`s (As)
= �n + �cn +

1

�`s (As)
� (�c � 1)n + 1.

That f . q
E THA)
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Linear Sized Sparsifiers

Setting the parameters

By our invariant, we can take any �,� for which

1

�
+ 1  1

�
� 1

1� �
.

For every such choice, we have

↵max(As)

↵min(As)
 n + ⌫cn � 1

�n + �cn + 1
 �c + 1

�c � 1
.
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Linear Sized Sparsifiers

Setting the parameters

The example presented in Spielman considers � =
1
3 which leads us

to take ⌫ = 2. Setting, say, c = 13 yields a ratio of 13. By dividing

all weights by
p
13 we get

1p
13

LG 4LH 4
p
13LG

You are encouraged to play with the numbers to improve the ratio.


