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Lecture 2

The Fundamental Theorem of Algebra

In this lecture, we will discuss the Fundamental Theorem of Algebra while exploring

the number systems N ⊆ Z ⊆ Q ⊆ R ⊆ C. In retrospective, one can think of

this process emerging so that the theorem will hold. The extension of some of these

number systems from their prior will be abstracted later in the course and so it is

bene�cial to see the ideas involved on a familiar ground. I will mostly follow Chapters

1,2 of Stewart's excellent book on Galois Theory Stewart [2015].

2.1 The Familiar Number Systems

Solving polynomial equations, despite its boring reputation, has a fascinating history

and required some signi�cant psychological leaps from the very best of mathemati-

cians (and it still does from the best of students). Slowly but surely, mathematicians

extended their �number systems� when encountered with a problem expressed within

the known number system whose solution was �outside� of it. In this section we

brie�y review this process. Some of the ideas that are required for extending these

number systems will be abstracted later in the course and so it is bene�cial to recall

these ideas when applied at a familiar ground which we, at the very least, think we

understand.

It all started with the set {1, 2, 3, . . .} which by itself is a completely non-trivial

concept. It was highly abstract a few thousand years ago. It also didn't help that

this set is in�nite. Even today, many high school students are confused about the

alleged paradox that every number is ��nite� yet there are in�nitely many of them.

In this number system we can solve equations like x + 1 = 2. I will leave this as an

exercise.

2.1.1 Enter zero

The acceptance of zero as a legitimate number took some getting used to. The ancient

Greeks, for example, had no symbol for zero as they ba�ed with deep philosophical

questions such as �how can nothing be something?�. Zero was used as a placeholder

quite early in positional number systems like we use today, but it was considered

nothing more for years to come. We write N = {0, 1, 2, . . .} for the natural numbers.

Yes, we consider 0 to be a (very) natural number. In fact, when we come to formalize
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the notion of a number system using an axiomatic approach, the existence of (the

abstraction of) 0 will be one of the axioms. More so, it will be the only number we

demand to exist within the number system.

2.1.2 Negative numbers

Don't get me started about the negatives which allows one to solve equations like

x + 1 = 0. It su�ces to say that even at 1759, the English mathematician Maseres

wrote that negative numbers �darken the very whole doctorines of equations and make

dark the things which are in their nature excessively obvious and simple�. Leibniz is

considered to be the �rst to systematically employ negative numbers. He did so for

his development of Calculus. I don't know about you, but I always imagined that

Calculus is light years away from any discussion about negative numbers. Anyhow,

denote the whole numbers by Z = {0,±1,±2, . . .}. The letter Z comes from the

German word �Zahl� which translates to a teller in English.

2.1.3 Be rational

What about 2x = 1? Positive fractions seem to have been recognized earlier than

zero and the negatives. However, there is some complexity involved in their formal

de�nition. We are used to think of rational numbers as, well, numbers or more

precisely as a pair of whole numbers. In particular, we writeQ = {a
b
| a, b ∈ Z, b 6= 0}.

However, we identify some of the numbers in this set such as 1
2
and 2

4
. So, in fact, a

rational number is not quite a pair of Z elements but rather a set of such pairs. More

precisely, a rational number is an equivalent class with respect to some equivalent

relation. However, we are so used to this that we suppress this fact and, in particular,

write things like Z ⊂ Q which formally does not make much sense. What we actually

mean is that there is a copy of Z �embedded� in Q. This copy is given by {a
1
| a ∈ Z}

and it behaves like Z when we add and multiply unlike, say, { 1
a
| a ∈ Z} ∪ {0}.

Exercise 1. The Egyptians only considered fractions of the form 1
a
for a ∈ {1, 2, 3, . . .}

(and 2
3
but let's ignore that one). One nice and not completely trivial fact is that

any fraction a
b
with 1 ≤ a ≤ b can be written as a �nite sum of distinct Egyptian

fractions. Can you prove that?

Later in the course we will abstract this process of taking a number system like Z,
some of whose elements cannot be inverted, and �embed� it in a bigger number system

that is closed to inversion.
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2.1.4 Get real

Attempts made by ancient mathematicians who recognized only Q as the set of num-

bers to solve x2 = 2 is a famous story in the history of Mathematics. Once, again,

the realization that this is impossible came as a philosophical shock.

Exercise 2. Here is a lesser-known proof sketch for the insolvability of x2 = 2 in Q.
Try to �ll in the details. Assume by way of contradiction that a

b
is a solution to x2 = 2

with a, b ∈ N and b minimal among all such solutions. Consider now the expression
2b−a
a−b

.

Extending Q to R is completely non-trivial. It involves taking the topological closure

of Q with respect to the natural metric and by that close the (many many) �wholes�

in Q. This is more or less done by adjoining the limits of all convergent sequences in

Q. Anyhow, whatever R is, it is fairly safe to say that we all feel comfortable with it.

We don't call them real numbers for nothing!

2.1.5 Complex numbers

What about solving x2 + 1 = 0? We are all programmed to shout i (or ±i) but deep
inside one might have the feeling that i is just a made up symbol�a cheat if you will.

I mean,
√
2 I can get�it is the limit of a sequence of approximate solutions to x2 = 2.

But i is just, well, not real... Like the zero and the negative numbers, i wasn't greeted

with a smile by humankind. It was more like, well, we really need this guy to solve

equations, but it was considered as this formal symbol that one can manipulate but

dare not consider as �real�.

Let's elaborate on that. We all know how to solve the general quadratic equation

ax2 + bx+ c = 0. We have this neatly wrap expression for the solutions

x1,2 =
−b±

√
b2 − 4ac

2a

which I'm positive you can cook up by yourself. This formula, expressed quite di�er-

ently, was known already to the Babylonians some 3600 years ago. Applying this to

x2+1 = 0 doesn't give any meaningful answer in R as the
√
· is applied to a negative

number. This wasn't a problem to i-non-believers. For them, it was simply Math's

way of telling us that there is no solution.

i came to hunt the human race when people were �nally able to solve cubic equations.

It turns out that there is a general solution to such equations and one can derive it

in a page or two (see Stewart's book). However, there is a signi�cant amount of

trickery involved and it was an open problem to come up with a solution for quite

some time. It was only at around 1535 that the general cubic equation was solved by
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Fontana (nicknamed Tartaglia). First, using some standard trickery, one can reduce

the general cubic equation to the form x3 + px + q = 0. A general solution is then

given by, get ready for this,

x =
3

√
−q

2
+

√
q2

4
+

p3

27
+

3

√
−q

2
−
√

q2

4
+

p3

27
.

Impressive no doubt. But, here is the catch. If we apply this to x3−15x−4 = 0 which

clearly has a solution x = 4, we get x = 3
√
2 +
√
−121+ 3

√
2−
√
−121. Where is our

beloved 4? Turns out that if you are willing to consider i as if it was a legitimate

number, assuming all rules of arithmetics apply to him, you can extract 4 out of this

mess.

You see, it is not just that x3 − 15x− 4 has solutions outside of the reals which you

may or may not choose to consider as real. It is that even if these solutions are real

as 4, our way of �nding them gets out of R before landing back safely. You might

not be so impressed. After all, this is just one way of �nding a solution. Perhaps

the undesired visit of i is due to the algorithm (the formula) not the problem itself.

Well, turns outs that one can prove, in some formal sense, that any solution that is

expressed by radicals (square roots, cubic roots, etc) will go through i even in some

cases in which all roots are real. Indeed, Mathematics is trying to tell us something...

Soon enough we'll start talking about ��eld extensions�. The uncomfortable feeling

we may have had with i�adding this arti�cial solution�will come to hunt us again.

So, we better surface these feelings at a familiar ground.

At any rate, we de�ne C = {a+ ib | a, b ∈ R} where addition and multiplication are

given by �extending� these operations from R together with the rule i2 = −1. So,

multiplication is given by

(a+ bi)(c+ di) = ac+ adi+ bci+ bdi2

= (ac− bd) + (ad+ bc)i.

Going back to our friend,
√
2. Come to think of it, if something is not real then it is√

2. I mean it is an endless pattern-less string of digits. There is not enough atoms

in the universe to represent this idealized number. So, I claim you have never seen

the real
√
2 in your life!
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2.2 Will this ever end?

One of the many cool features of C is that it is the end of this game. C has the

remarkable property that any polynomial equation with coe�cients in C has all of

its solutions in C. That's a great deal! We added only this single weird symbol i so

as to obtain/invent/discover, you choose, a solution to the speci�c simple equation

x2 + 1 = 0 and what I'm saying is that by doing that, we got all solutions to all

polynomial equations for free even if the coe�cients have i's in them! Later in the

course we will refer to number systems that have this property algebraically closed.

When I say that C is the end of the game, I don't mean that C is the only number

system with this property. I mean that it is the only one if you start from R.
This property of C is given by The Fundamental Theorem of Algebra. To state it,

recall that a solution to a polynomial equation p(x) = 0 is called a root of p.

Theorem 2.3 (The Fundamental Theorem of Algebra). A non-constant polynomial

with coe�cients in C has a root in C.

From Theorem 2.3 one can deduce that a degree n ≥ 1 complex polynomial has

exactly n roots. Some of these roots though my repeat more than once. For example,

x2 − 2x + 1 can be written as (x− 1)2 from which one would agree that 1 counts as

2 roots of the polynomials, whatever that means.

Theorem 2.3 wasn't obvious even for the great mathematicians of the time. For

example, Bernoulli proposed a counterexample of degree 4. The great Euler proved

him wrong in a letter to Goldbach. Euler claimed he has a proof for all degrees n ≤ 6.

A proof for the general case had to wait for Gauss who used trigonometric series in

his 1699' proof.

For the Ph.D. students who are reading this, Gauss proved the theorem while being a

Ph.D. student. Just saying :) Gauss, being Gauss, subsequently gave 3 other proofs.

By now, there are many proofs, non of which is very easy, but you can �t one to a

page or two (see Stewart's book). I'm not going to give a proof here. I'm gonna do

something even better�I'm gonna show you why the theorem is true! The proof sketch

is �topological� in nature, i.e., we're going to stretch continuous stu� in a continuous

way. Also, I am kind of going to assume that you know about polar presentation.

Proof Sketch. Say ∗ you are looking at a polynomial p(x) = a0+a1x+ · · ·+anx
n with

an 6= 0. If a0 = 0 then x = 0 is clearly a root of p. So, a0 ∈ C sits somewhere in the

complex plane away from the origin. Consider the following thought experiment. Fix

a real number r ≥ 0 and consider the circle of all x ∈ C with modulus |x| = r. Where

does p map this circle to? Well, I don't quite know. But, if r is very large (compared

∗When turned into a formal proof, replace with �Let p(x) be...�
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to the coe�cients and the degree n) then anx
n will be the dominating term. If it

was the only term then the image of the map of the circle would have been a circle

(in fact, n circles on top of each other) with modulus anr
n. However, there are these

other pesky terms which make the actual image look like a wiggly circle. At any rate,

if r is large enough the image is almost a circle.

Now comes the punch line. Starting from the huge r you chose, start to decrease it

slowly all the way down to 0. If r is chosen large enough, we can make sure that the

wiggly shape will contain both a0 and the origin. However, we know that at the end,

when r = 0, the wiggly shape will converge to the single point a0 and, in particular.

As everything we do is �continuous� at some point the wiggly shape�the image of

p�must pass through the origin.

2.3 What else is cool about C?
Well, many things. For one, it turns out that C is very real. I am no expert, but it

seems that complex numbers are at the very least most suitable for describing Quan-

tum Mechanics. Mathematicians like complex numbers partially because working

with complex functions is much nicer than with real-valued functions. To give some

feeling for it, if you're working with a real function and it has an annoying singularity

at some point, in R the function is �broken� into two pieces. Over C however you can

just �go around� the misbehaved point. You can do much more though. For example,

you can take a function that is de�ned somewhere in the complex plane but not in

other possibly huge parts of it and, if the function is nice enough, you can extend

it to more or less the whole complex plane in a unique way. It is a typical scenario

that the new function shed new light on the original, partially de�ned, function. One

fascinating application of such technique is to number theory and in particular to the

Riemann Zeta Function. We'll talk a bit about it later in the course.

2.4 What does a Turing Machine think of C?
The Fundamental Theorem of Algebra is extremely useful in theoretical computer

science, coding theory, cryptography and what have you. However, computers (or

Turing Machines if you must) don't like these in�nite precision kind of number systems

like R and C. Even Q and Z are not comfortable computing over as when turning

to the analysis, one would need to keep track of the size of the computed numbers

which, at best, is daunting.

Luckily, there are ��nite number systems� which, being �nite, avoid these issues.

Once can compute over these �nite number systems and prove theorems about them.
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In particular, The Fundamental Theorem of Algebra more or less holds for these

number systems as well�not just over C. The proof, however, as you might expect

looks very di�erent as we're working in a very di�erent setting. Soon we will get to

these mysterious �nite number systems. We will call them �nite �elds.

2.5 Bézout's Theorem

Another very interesting and useful generalization of Theorem 2.3 is obtained by

viewing the whole thing geometrically. First, let's work only over R so it will be

easier to draw things in our head. Theorem 2.3 implies that over R, a degree n ≥ 1

polynomial p(x) has at most n roots. Geometrically, this means that the set of points

C = {(x, p(x)) | x ∈ R} that describe the graph of p(x) in the real plane intersects

the x-axis {(x, 0) | x ∈ R} in at most n points. You can easily convince yourself that

this holds true not only for the x-axis but actually for any line {(x, y) | ax+ by = c}
where a, b, c ∈ R, not all zero, as long as C does not fully contain the line (this

reservation with respect to the x-axis is hidden in the hypothesis of Theorem 2.3 that

the degree n of p is greater than 1. This takes out the zero polynomial, whose graph

is the x-axis, out of the picture.

We call C an algebraic curve (or simply a curve). Naturally, we say that C has degree

n. The curves that correspond to linear equations have degree 1. So, Theorem 2.3

implies that the number of intersection points between a degree n curve and a degree

1 curve in the plane is at most n · 1. What about a degree n curve and a degree m

curve? You guessed right! The number of intersection points is at most n ·m. This

holds for even more general curves than �just� those of the form y = p(x). You can

mix up x, y in anyway you like. For example, xy − 1 = 0 is a degree 2 curve.

This remarkable result is called Bézout's Theorem. In fact, more is true. If you

work over C and count repeated points of intersections correctly you can almost say

that the number of intersection points will be exactly n ·m. That is not quite true�

think of two parallel lines. Turns out, though, that if you are open about changing

your geometry from the standard geometry (called a�ne geometry) to what is called

projective geometry, you get precisely n · m points of intersection. The projective

plane can be thought of as adding �points at in�nity� to the a�ne plane, in which

parallel lines meet. We won't get into this in this course (ad ahead!) but will do so

in a followup course on the fascinating subject of Algebraic Geometric codes. One of

the goals of this course is to prepare you for the next one.

Let's close with a fun fact. In his original 1770 paper, Bézout didn't correctly account

for multiplicities. As the theorem statement was �in the air�, one may argue (as some

critics have) that the result is neither original nor correct...
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