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Seeded Extractor

[N1san-Zuckerman ‘93,..., Guruswami-Umans-
Vadhan *07, DW’08, DKSS’09]
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Non-Malleable Extractor
[Dodis-Wichs 2009]

An adversary changes the seed Y to Y #Y.
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How correlated are the two outputs?



Privacy Amplification
[Bennett, Brassard, Robert 1985]
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Privacy Amplification with Passive Adversary
[Bennett, Brassard, Robert 1985]
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Seeded Extractor Fails for Active Adversary
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Active adversary: can arbitrarily insert, delete, reorder messages



Privacy Amplification with nmExt
|[Dodis-Wichs’09]
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Non-Malleable Extractor
[Dodis-Wichs 2009]

e No one-round protocol if k<n/2, and optimal 2-round
protocols follow from non-malleable extractors.

e If Eve is passive, then the protocol succeeds.

e If Eve 1s active, then the protocol detects the
tampering and aborts w.h.p.

e Another important application: independent source
(e.g., two-source) extractors.



Error correcting codes

Y=Dec(M’)



Error correcting codes

e However, the type of error one can correct 18
limited—symbol erasure/modification.

e How to handle more general error?

o Error detection — however, cannot even detect a
function that changes all codewords into a fixed
string.



Non-Malleable (NM) Codes
| Dziembowski, Pietrzak and Wichs 2010 ]

e Fix a family of tampering functions F on {0,1 }n.
e Non-malleable code C on {0,1}n against F consists of:
e Randomized encoder: Enc: {0,1}" — {0,1}"
e Deterministic decoder: Dec:{0,1}" — {0,1}™
e 1) For all s, Dec(Enc(s)) = s.

e 2) For any f 1n F, either Dec(f(Enc(s))) =s, oris a
probability distribution independent of s.

rate of the code: m/n



Existential Result
| Cheraghchi-Guruswami’14a]

e [f the size of the class of tampering functions 1s
limited: | F| < 22"

e There exists non-malleable codes against F with
rate close to 1-a with exponentially small error.

e Explicit constructions known for: split-state
tampering, NCO, ACO, affine functions...



Connections to nm Extractors
| Cheraghchi-Guruswami’14b]

Uniform or high entropy
source X Vv
£ V and V’ each has m bits.
(V, V) is e-close to (U, V).
V’
f(X)

This gives a non-malleable code against f with rate m/n and error 2m€.

Encoding: uniformly sample the pre-image of V.
Decoding: compute the output of the extractor.



The split state model

e Non explicit: non-malleable codes exist in the 2-split
state with constant rate and exponentially small error.

e 2-split state model corresponds to a non-malleable
two-source extractor.



Constructions of Seeded nm
Extractors

e Non explicit: k=O(m+log d+log(1/g)), d=0O(log (n/e)).

e Lower bound on k: k=Q(log logn) [GS’17].

e Best constructions: either k or d can be optimal, the

other has a log!*o()(1/¢) dependence on &, or both have
log (1/¢)log log(1/¢) dependence on € [L’17, L’ 18].



Constructions of nm codes 1n
the split state model

e 2-split state model: [DKO’13, ADL’14, ADKO’15,
CGL’16, L’17] give codes with rate 1/log n and
exponentially small error.

o 3&4-split state model: [KOS’17, GMW’ 18] constant
rate with negligible error.

e 10-split state model: [CZ’14] gives codes with constant
rate and exponentially small error.

o 2-split state model: [L’18] gives codes with constant
rate and arbitrarily small constant error.



Constructions of nm Extractors

e Early constructions use character sums
|IDLWZ11], small biased sample space [CRS12],
and iner product [L’12].

e Only work for entropy rate at least 1/2 (or slightly
below).



A Simple Construction of nmExt
for k>n/2 [L12]

o Ext(x,y) = (x,y) over Fo.

e Two-source extractor for (n, k1) and (n, k) sources
with ki+ks > n.

e et X be an (n, k>n/2) source.

e [et Y be a uniform random seed with n/2 bits.
e View Y as an element 1n Forand let Enc(Y)=(Y, Y3).

o nmEXt(x, y)=(x, Enc(y)) over Fa.



Analysis

Enc(Y)=(Y, Y3) 1s injective =>Enc(Y) has entropy n/2=>
nmExt(X, Y) 1s close to uniform.

Enc(Y)=(Y, Y3) 1s 4-wise linearly independent over F»
=>Enc(Y)+Enc(f(Y)) has entropy at least n/2-1.

nmExt(X, Y) @ nmExt(X, f(Y)) 1s close to uniform.

Recently shown to be the first quantum-proof nm extractor
[ACLV’17].



More Recent Constructions
[CGL’16, Cohen’17, 1’17, L’18]
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Advice Generation [CGL’16]

*
- y 1 O(log (n/g)) bits
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Take a small slice Yiof Y,and Y’10f Y’

Compute V=Ext(X, Y1) and Z=(Sample(Enc(Y), V), Y1)
If Y7 # Y/, done.

Otherwise V=V’, Enc(Y) and Enc(Y”)
has a large distance, so Z # Z'w.h.p.



Correlation Breaker with
Advice
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Many Constructions of Correlation Breakers

The most efficient one uses independence preserving mergers.



Correlation Breaker: First Step
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Use each bit of Z (Z’) to do a tlip-flop extraction



Independence Preserving Merger
T
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T and T’ may be correlated

W 1s uniform given W’
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Every row of T 1s uniform, and
11 s.t. T; is uniform given T’; (by flip-flop extraction)



