Non-Malleable Extractors

Xin Li Johns Hopkins University

Seeded Extractor

[Nisan-Zuckerman '93,..., Guruswami-Umans-Vadhan '07, DW'08, DKSS'09]

d=O(log (n/ε)) uniform bit seed Y

(Ext(X,Y),Y)

Strong extractor:

Seed=Catalyst

(m+d) bits

Non-Malleable Extractor [Dodis-Wichs 2009]

An adversary changes the seed Y to $Y' \neq Y$.

How correlated are the two outputs?

Privacy Amplification

[Bennett, Brassard, Robert 1985]

shared secret weakly random string

Privacy Amplification with Passive Adversary [Bennett, Brassard, Robert 1985]

Seeded Extractor Fails for Active Adversary

Active adversary: can arbitrarily insert, delete, reorder messages

Privacy Amplification with nmExt [Dodis-Wichs'09]

Non-Malleable Extractor [Dodis-Wichs 2009]

- No one-round protocol if k<n/2, and optimal 2-round protocols follow from non-malleable extractors.
- If Eve is passive, then the protocol succeeds.
- If Eve is active, then the protocol detects the tampering and aborts w.h.p.
- Another important application: independent source (e.g., two-source) extractors.

Error correcting codes

Error correcting codes

- However, the type of error one can correct is limited—symbol erasure/modification.
- How to handle more general error?
- Error detection however, cannot even detect a function that changes all codewords into a fixed string.

Non-Malleable (NM) Codes [Dziembowski, Pietrzak and Wichs 2010]

- Fix a family of tampering functions F on $\{0,1\}^n$.
- Non-malleable code C on $\{0,1\}^n$ against F consists of:
 - Randomized encoder: Enc: $\{0,1\}^m \to \{0,1\}^n$
 - Deterministic decoder: Dec: $\{0,1\}^n \to \{0,1\}^m$
 - 1) For all s, Dec(Enc(s)) = s.
 - 2) For any f in F, either Dec(f(Enc(s))) = s, or is a probability distribution independent of s.

rate of the code: m/n

Existential Result [Cheraghchi-Guruswami'14a]

• If the size of the class of tampering functions is limited: $|\mathcal{F}| \leq 2^{2^{\alpha n}}$

• There exists non-malleable codes against F with rate close to $1-\alpha$ with exponentially small error.

• Explicit constructions known for: split-state tampering, NC0, AC0, affine functions...

Connections to nm Extractors [Cheraghchi-Guruswami'14b]

This gives a non-malleable code against f with rate m/n and error 2mE.

Encoding: uniformly sample the pre-image of V. Decoding: compute the output of the extractor.

The split state model

- Non explicit: non-malleable codes exist in the 2-split state with constant rate and exponentially small error.
- 2-split state model corresponds to a non-malleable two-source extractor.

Constructions of Seeded nm Extractors

• Non explicit: $k=O(m+\log d+\log(1/\epsilon))$, $d=O(\log (n/\epsilon))$.

• Lower bound on k: $k=\Omega(\log \log n)$ [GS'17].

• Best constructions: either k or d can be optimal, the other has a $\log^{1+o(1)}(1/\epsilon)$ dependence on ϵ , or both have $\log (1/\epsilon) \log \log (1/\epsilon)$ dependence on ϵ [L'17, L'18].

Constructions of nm codes in the split state model

- 2-split state model: [DKO'13, ADL'14, ADKO'15, CGL'16, L'17] give codes with rate 1/log n and exponentially small error.
- 3&4-split state model: [KOS'17, GMW'18] constant rate with negligible error.
- 10-split state model: [CZ'14] gives codes with constant rate and exponentially small error.
- 2-split state model: [L'18] gives codes with constant rate and arbitrarily small constant error.

Constructions of nm Extractors

• Early constructions use character sums [DLWZ11], small biased sample space [CRS12], and inner product [L'12].

• Only work for entropy rate at least 1/2 (or slightly below).

A Simple Construction of nmExt for k>n/2 [L'12]

- Ext(x,y) = $\langle x,y \rangle$ over F₂.
- Two-source extractor for (n, k_1) and (n, k_2) sources with $k_1+k_2>n$.
- Let X be an (n, k>n/2) source.
- Let Y be a uniform random seed with n/2 bits.
- View Y as an element in F_{2^n} and let $Enc(Y)=(Y, Y^3)$.
- nmExt(x, y)= $\langle x, Enc(y) \rangle$ over F_2 .

Analysis

• Enc(Y)=(Y, Y³) is injective =>Enc(Y) has entropy n/2=> nmExt(X, Y) is close to uniform.

• Enc(Y)=(Y, Y³) is 4-wise linearly independent over F₂ =>Enc(Y)+Enc(f(Y)) has entropy at least n/2-1.

• $nmExt(X, Y) \oplus nmExt(X, f(Y))$ is close to uniform.

• Recently shown to be the first quantum-proof nm extractor [ACLV'17].

More Recent Constructions [CGL'16, Cohen'17, L'17, L'18]

Advice Generation [CGL'16]

Take a small slice Y₁ of Y, and Y'₁ of Y'

Compute $V=Ext(X, Y_1)$ and $Z=(Sample(Enc(Y), V), Y_1)$

If $Y_1 \neq Y_1'$, done.

Otherwise V=V', Enc(Y) and Enc(Y') has a large distance, so $Z \neq Z'$ w.h.p.

Correlation Breaker with Advice

Many Constructions of Correlation Breakers

The most efficient one uses independence preserving mergers.

Correlation Breaker: First Step

Use each bit of Z (Z') to do a flip-flop extraction

Independence Preserving Merger

Every row of T is uniform, and \exists i s.t. T_i is uniform given T'_i (by flip-flop extraction)