Expander Random Walks: A Fourier-Analytic Approach

Gil Cohen (Tel Aviv University)

Based on joint works with

Noam Peri (TAU), Amnon Ta-Shma (TAU) (STOC'21)

Dor Minzer (MIT), Shir Peleg (TAU),
Aaron Potechin (U of Chicago), Amnon Ta-Shma (TAU)

September 20, 2021

Outline

- Spectral expanders
- Question
- 3 Answers
- Approach

Spectral Expanders

Let G = (V, E) be a d-regular undirected graph on n vertices.

$$(\mathbf{W}_G)_{u,v} = \begin{cases} \frac{1}{d}, & uv \in E, \\ 0, & \text{otherwise.} \end{cases}$$

The eigenvalues of \mathbf{W}_G are real, satisfying

$$-1 \leq \lambda_n \leq \cdots \leq \lambda_2 \leq \lambda_1 = 1.$$

The spectral expansion of G is given by

$$\lambda(G) = \max(\lambda_2, -\lambda_n).$$

The smaller $\lambda(G)$ is the better. The "best" spectral expanders, dubbed Ramanujan graphs, satisfy

$$\lambda = \frac{2\sqrt{d-1}}{d}.$$

Expander random walks

Meta question

How random are random walks on expanders?

Some pseudorandom properties

The Expander hitting property (Ajtai-Komlós-Szemerédi'87)

The Expander Chernoff bound (AKS'87, Gillman'98, Healy'08)

$$\Pr\left[\left(\frac{1}{2}\right)\right] < e^{-c(i-\lambda)\varepsilon^{i}t}$$

$$\Pr_{(v_1, \dots, v_t) \sim \mathsf{RW}} \left[\left| \frac{|\{v_1, \dots, v_t\} \cap S|}{t} - \mu \right| \ge \varepsilon \right] \le e^{-c(1-\lambda)\varepsilon^2 t}$$

Outline

- Spectral expanders
- Question
- Answers
- 4 Approach

Question

Question

What test functions are fooled by a random walk on expanders?

For G = (V, E) and val : $V \to \{\pm 1\}$ let $RW_{G,val} \in \{\pm 1\}^t$ be the distribution $val(v_1), \ldots, val(v_t)$ where v_1, \ldots, v_t is a random walk in G.

Given $f:\{\pm 1\}^t \to \{\pm 1\}$ define

$$\mathcal{E}_{G,\mathsf{val}}(f) = \left| \mathbb{E} \left[f(\mathsf{RW}_{G,\mathsf{val}}) \right] - \mathbb{E} \left[f(\mathsf{val}(V)^t) \right] \right|.$$

Question

Recall

$$\mathcal{E}_{G,\mathsf{val}}(f) = \left| \mathbb{E} \big[f(\mathsf{RW}_{G,\mathsf{val}}) \big] - \mathbb{E} \big[f(\mathsf{val}(V)^t) \big] \right|.$$

Definition

For λ, μ and $f: \{\pm 1\}^t \to \{\pm 1\}$, define

$$\mathcal{E}_{\lambda,\mu}(f) = \sup_{G,\mathsf{val}} \mathcal{E}_{G,\mathsf{val}}(f),$$

where

- G = (V, E) ranges over all λ -spectral expanders; and
- val ranges over all valuations with $\mathbb{E}[\mathsf{val}(V)] = \mu$.

Pseudorandom properties revisited

The Expander hitting property (Ajtai-Komlós-Szemerédi'87)

$$\mathcal{E}_{\lambda,\mu}(\mathsf{AND}_t) \leq (\mu + \lambda)^t.$$

The Expander Chernoff bound (AKS'87, Gillman'98, Healy'08)

$$\Pr\left\{\left(\frac{1}{2}\right)\right\} < e^{-c(-\lambda)\epsilon^{t}t}$$

$$\mathcal{E}_{\lambda,\mu}(\mathbf{1}_{[(\mu-\varepsilon)t,(\mu+\varepsilon)t]}) \leq e^{-c(1-\lambda)\varepsilon^2t}$$

Other known results

CLT for expander random walks wrt CDF.

Theorem (Kipnis-Varadhan'86, Lezaud'01, Kloeckner'17)

$$\mathcal{E}_{\lambda,\mu}\left(\sum_{i=1}^t x_i \geq k\right) = O\left(\frac{1}{(1-\lambda)^2\sqrt{t}}\right).$$

Perhaps most surprising is

Theorem (Ta-Shma'17 (see also Alon'93, Wigderson-Rozenman'04))

$$\mathcal{E}_{\lambda,\mu}$$
 (Parity) $\leq (\mu + 2\lambda)^{t/2}$.

What about other test functions?

What about other symmetric functions? Namely, CLT wrt TVD (raised independently by Guruswami-Kumar'20).

Beyond symmetric functions.

- AC⁰ circuits.
- Bounded-width (any order) read-once branching programs.
- Low query complexity.

Question

Meta question

How random are random walks on expanders?

Question

What test functions are fooled by a random walk on expanders?

Question (formalized)

Given $f: \{\pm 1\}^t \to \{\pm 1\}$, bound $\mathcal{E}_{\lambda,\mu}(f)$.

Remarks.

- For simplicity, we only consider $\mu = 0$ and denote $\mathcal{E}_{\lambda,\mu}$ by \mathcal{E}_{λ} .
- To bound $\mathcal{E}_{\lambda}(f)$ it suffices to bound $\mathcal{E}_{G,\text{val}}(f)$ for all relevant G,val. We fix G,val and write \mathcal{E} for $\mathcal{E}_{G,\text{val}}$.

Outline

- Spectral expanders
- Question
- 3 Answers
- Approach

Symmetric functions

Theorem

For every symmetric function $f:\{\pm 1\}^t \to \{\pm 1\}$,

$$\mathcal{E}_{\lambda}(f) = O(\lambda).$$

Further, the bound is tight for this class.

Theorem

$$\mathcal{E}_{\lambda}(\mathbf{1}_w) = O\left(rac{\lambda}{\sqrt{t}}
ight),$$
 $\mathcal{E}_{\lambda}(\mathsf{Majority}) = O\left(rac{\lambda^2}{\sqrt{t}}
ight).$

Beyond symmetric functions

Theorem (AC⁰ circuits)

For every f that is computable by a size-s depth-d circuit,

$$\mathcal{E}_{\lambda}(f) = O\left(\sqrt{\lambda} \cdot (\log s)^{2(d-1)}\right).$$

This is essentially tight.

Theorem (Any order ROBP)

For every $f:\{\pm 1\}^t \to \{\pm 1\}$ that is computable by any order width-w ROBP,

$$\mathcal{E}_{\lambda}(f) = O\left(\sqrt{\lambda} \cdot (\log t)^{2w}\right).$$

For permutation ROBP, $\mathcal{E}_{\lambda}(f) = O\left(\sqrt{\lambda} \cdot w^4\right)$.

Outline

- Spectral expanders
- Question
- 3 Answers
- 4 Approach

Our approach

Our Approach

 $\bullet \ \, \mathsf{Bound} \,\, \mathcal{E}(\chi_{\mathcal{S}}) = |\mathbb{E}\left[\chi_{\mathcal{S}}(\mathsf{RW})\right]| \,\, \mathsf{for a general character}$

$$\chi_S(x_1,\ldots,x_t)=\prod_{i\in S}x_i$$

with $\emptyset \neq S \subseteq [t]$.

$$f(x) = \sum_{S \subseteq [t]} \widehat{f}(S) \chi_S(x).$$

Conclude that

$$\mathcal{E}(f) \leq \sum_{\emptyset \neq S \subset [t]} |\widehat{f}(S)| \mathcal{E}(\chi_S).$$

Degree 1 characters

For every $a \in [t]$, v_a is uniformly distributed over V and so $\mathcal{E}(x_a) = 0$.

Degree 2 characters

By the expander mixing lemma,

$$\mathcal{E}(x_a x_{a+1}) \leq \lambda.$$

The general case can be reduced to the above by considering G^{b-a} , and so

$$\mathcal{E}(x_ax_b) \leq \lambda^{b-a}$$
.

Degree 3 characters

Test your intuition.

Degree 3 characters

Informally. A random step on a λ -spectral expander G can be thought of as sampling a vertex uniformly at random with probability $1-\lambda$ and letting an adversary select a vertex with probability λ .

Formally.

$$W_G = J + E$$
,

where $\mathbf{J}=(\frac{1}{n})_{i,j}$ and $\|\mathbf{E}\|=\max\{\|\mathbf{E}\mathbf{x}\|_2:\|\mathbf{x}\|_2=1\}\leq \lambda.$

Informally.

- Except with probability λ^{Δ_1} , $b \mid a \sim V$.
- Independent of that, e.w.p λ^{Δ_2} , $c \mid b \sim V$.

Thus, e.w.p. $\lambda^{\Delta_1+\Delta_2}$, the bias is 0 and so $\mathcal{E}(x_ax_bx_c) \leq \lambda^{\Delta_1+\Delta_2}$.

Degree 3 characters

Formally. Let
$$\mathbf{1} = \left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right)^{\mathsf{T}}, \mathbf{P} = \mathsf{diag}(\mathsf{val}(v))_{v \in V}$$
. Observe that
$$\mathbb{E}_{\mathsf{RW}}(\chi_{a,b,c}) = \mathbf{1}^{\mathsf{T}} \mathbf{PW}^{\Delta_2} \mathbf{PW}^{\Delta_1} \mathbf{P1}.$$

Now,
$$\mathbf{W}^{\Delta_i} = \mathbf{J} + \mathbf{E}_i$$
, with $\|\mathbf{E}_i\| \leq \lambda^{\Delta_i}$, and so

$$\begin{aligned} \mathbf{1}^\mathsf{T} \mathsf{PW}^{\Delta_2} \mathsf{PW}^{\Delta_1} \mathsf{P1} &= \mathbf{1}^\mathsf{T} \mathsf{PJPJP1} + \\ & \mathbf{1}^\mathsf{T} \mathsf{PJPE_1} \mathsf{P1} + \\ & \mathbf{1}^\mathsf{T} \mathsf{PE_2} \mathsf{PJP1} + \\ & \mathbf{1}^\mathsf{T} \mathsf{PE_2} \mathsf{PE_1} \mathsf{P1}. \end{aligned}$$

As
$$JP1 = (11^{T})P1 = 1(1^{T}P1) = 0$$
, we have

$$\mathbb{E}_{\mathsf{RW}}(\chi_{a,b,c}) = \mathbf{1}^\mathsf{T} \mathsf{P} \mathbf{E}_2 \mathsf{P} \mathbf{E}_1 \mathsf{P} \mathbf{1} \quad \Longrightarrow \quad \mathcal{E}(\chi_{a,b,c}) \leq \|\mathsf{P} \mathbf{E}_2 \mathsf{P} \mathbf{E}_1 \mathsf{P}\| \leq \lambda^{\Delta_1 + \Delta_2}.$$

Degree 4 characters

$$\begin{split} \mathbb{E}_{\mathsf{RW}}(\chi_{\mathsf{a},b,c,d}) &= \mathbf{1}^\mathsf{T} \mathsf{PW}^{\triangle_3} \mathsf{PW}^{\triangle_2} \mathsf{PW}^{\triangle_1} \mathsf{P} \mathbf{1} \\ &= \mathbf{1}^\mathsf{T} \mathsf{PE}_3 \mathsf{PW}^{\triangle_2} \mathsf{PE}_1 \mathsf{P} \mathbf{1} \end{split}$$

and so

$$\mathcal{E}(\chi_{a,b,c,d}) \leq \|\mathbf{P}\mathbf{E}_{3}\mathbf{P}\mathbf{W}^{\Delta_{2}}\mathbf{P}\mathbf{E}_{1}\mathbf{P}\| \leq \lambda^{\Delta_{1}+\Delta_{3}}.$$

$$\mathcal{E}\left(\begin{array}{c} & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Degree 5 characters

and so

$$\mathcal{E}(\chi_{a,b,c,d,e}) \leq \lambda^{\Delta_1 + \Delta_2 + \Delta_4} + \lambda^{\Delta_1 + \Delta_3 + \Delta_4} + \lambda^{\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4} \approx \lambda^{\Delta_1 + \min(\Delta_2,\Delta_3) + \Delta_4}.$$

$$\mathcal{E}\left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array}\right) < \lambda^{3}$$

Degree 6 characters

$$\mathcal{E}(\chi_{a,b,c,d,e,f}) \lessapprox \lambda^{\Delta_1 + \Delta_3 + \Delta_5} + \lambda^{\Delta_1 + \Delta_2 + \Delta_4 + \Delta_5}.$$

Degree 7 characters

$$\xi \lesssim \lambda^{\Delta_1 + \Delta_6} \left(\lambda^{\Delta_3 + \Delta_5} + \lambda^{\Delta_3 + \Delta_4} + \lambda^{\Delta_a + \Delta_4} \right)$$

Degree 8 characters (this is addicting...)

The λ -tail

$$\Lambda^{T} P W^{\Delta_{3}} P W^{\Delta_{6}} P W^{\Delta_{5}} P W^{\Delta_{5}} P W^{\Delta_{4}} P W^{\Delta_{3}} P W^{\Delta_{1}} P W^{\Delta_{1}} P W^{\Delta_{1}} P M^{\Delta_{1}} P M^{\Delta_{1}} P M^{\Delta_{1}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{3}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{3}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{3}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{3}} P M^{\Delta_{1}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{2}} P M^{\Delta_{3}} P M^{\Delta_{3$$

Definition

Let $S = \{s_1 < \dots < s_k\} \subseteq [t]$, $k \ge 4$, and let $\Delta_i = s_{i+1} - s_i$. Define

$$\Delta(S) = \sum_{i=1}^{k-2} \min(\Delta_i, \Delta_{i+1}).$$

For k = 2, $\Delta(S) = \Delta_1$. For k = 3, $\Delta(S) = \Delta_1 + \Delta_2$.

Lemma

$$\mathcal{E}(\chi_S) \leq 2^{|S|} \cdot \lambda^{\frac{\Delta(S)}{2}}$$
.

Beyond symmetric functions

Definition

A function $f:\{\pm 1\}^t \to \{\pm 1\}$ has *b*-Fourier decay if

$$\forall k \in [n]$$
 $\sum_{\substack{S \subseteq [t] \ |S|=k}} |\widehat{f}(S)| \leq b^k.$

Known Fourier decay results.

- For size-s depth-d circuits, $b = O((\log s)^{d-1})$ (Linial-Mansour-Nisan'93, Tal'17).
- For permutation width-w ROBP, $b \le 2w^2$ (Reingold-Steinke-Vadhan'13).
- For general width-w ROBP, $b = O((\log t)^w)$ (Chattopadhyay-Hatami- Reingold-Tal'18).
- For every f, $b \leq DT(f)$.

Beyond symmetric functions

Definition

A function $f:\{\pm 1\}^t \to \{\pm 1\}$ has $b ext{-Fourier decay if}$

$$\forall k \in [t] \quad \sum_{\substack{S \subseteq [t] \\ |S|=k}} |\widehat{f}(S)| \leq b^k.$$

Lemma

$$\mathcal{E}(f) = O(\sqrt{\lambda} \cdot b(f)^2).$$

Symmetric functions

Lemma (Main technical lemma)

$$\beta_k = \sum_{\substack{S \subseteq [t] \\ |S| = k}} \mathcal{E}(\chi_S) \lessapprox 2^k \binom{t}{\lfloor \frac{k}{2} \rfloor} \lambda^{\lceil \frac{k}{2} \rceil}.$$

Symmetric functions

$$\beta_{k} = \sum_{\substack{s \in I_{k} \\ |s| = k}} \mathcal{E}(\mathcal{X}_{s}) = \sum_{\substack{s \in I_{k} \\ |s| = k}} |\mathcal{T} P w^{\Delta_{k-1}} P ... w^{\Delta_{l}} P |\mathcal{T}|$$

$$\sum_{\substack{s \in I_{k} \\ |s| = k}} \mathcal{T}(s)$$

$$\mathcal{T} \in \begin{cases} \mathcal{E}(s) = \sum_{\substack{s \in I_{k} \\ |s| = k}} \mathcal{T}(s) \end{cases}$$

$$\Rightarrow \beta_{k} \leq \sum_{\substack{S \leq lk\\ |S|=k}} \sum_{k} \tau^{(S)} = \sum_{\substack{T \leq T \\ 0 \leq t \leq N}} c_{m}(T) \lambda^{m}$$

$$\downarrow C_{m}(T) \lambda^{m}$$

Summary and open problems

Summary.

- Expander random walks fool all symmetric functions.
- ullet Stronger Fourier decay \Longrightarrow better fooled by RW

Open problems.

- Tightness
- "Tailor-made" expanders
- Applications

Thanks!

You cannot fool them all

The cross cut function

$$f(x_1,\ldots,x_t) = \mathsf{Threshold}_{rac{ au}{2}t} \left(\sum_{i=1}^{t-1} x_i x_{i+1}
ight).$$

We have that

$$|\mathbb{E}[f(U_t)]| \le e^{-\Omega(\tau^2 t)} \to 0,$$

 $|\mathbb{E}[f(\mathsf{RW})]| \ge 1 - e^{-\Omega(\tau^2 t)} \to 1.$

Tightness

Lemma

Let G = (V, E) be a Cayley graph on the Boolean hypercube and consider a labelling of V by an eigenvector corresponding to λ_2 .

For
$$f:\{\pm 1\}^t \to \{\pm 1\}$$
 define $g:\{\pm 1\}^{2t} \to \{\pm 1\}$ by

$$g(x_1,\ldots,x_{2t})=f(x_1x_2,x_3x_4,\ldots,x_{2t-1}x_{2t}).$$

Then,

$$\mathbb{E}[g(\mathsf{RW})] = (T_{\lambda}f)(\mathbf{1}).$$