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The Loewner (partial) order

Recall from the problem set.

Definition
Let A,B be n x n symmetric matrices. We write A>=B if A—B is
PSD (which recall we write as A — B = 0).

It is best to first consider the definition for diagonal matrices A, B.
Note that A =B iff A;; > B;; for all i € [n].

A useful property that will allow us to prove a more general
statement is

A-B — C'AC:=C'BC forall C.
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The Loewner order and eigenvalues

Assume A, B have a common basis of eigenvectors, with
corresponding eigenvalues ag,...,a, and B, ..., B,, respectively.
Then,

A=B <<— Viec [n] o > B

Assume a1 > - -+ > « are the eigenvalues of A, and
b1 > -+ > B, the eigenvalues of B. Then,

A>B — VI'E[I’I] o > 0

even under no assumption on the eigenvectors. The other direction
is (generally) false.



Spectral Graph Sparsification

LThe Loewner order

Loewner order and the spectral norm

For every symmetric matrix A,

A <c <= —c<ap<a;<c
— —cI<XAXcT.

Recall that if W is the random walk matrix of G, then G is a
(1 — w)-spectral expander iff ||[W — J|| < w. This is equivalent to

—wI W -—-JxwT.

An equivalent formulation, focusing on the normalized Laplacian is
the following multiplicative-type statement.

1-w)(Z-N)<IT-W<(1+w)(Z-J).
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Spectral approximation

Let G, H be graphs on n vertices.
m We write G = H if Lg =Lpy.
m We say that H an e-spectral approximation of G if

(1 = €)|.G <Ly< (1 + €)LG.

Spectral approximation is a strong notion. It implies closeness of
m conductances,
m eigenvalues,

m effective resistances.
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Expanders as spectral approximators of the complete graph

For every € > 0 there exists ¢ = c¢(&) such that for every n there
exists a graph G with at most cn edges that s-approximates the
complete graph with self loops. In particular, Ramanujan graphs
achieve ¢ = O(1/¢?).

Can we spectral-approximate every graph with a sparse graph?

Theorem

For every ¢ > 0 and every (undirected) graph G on n vertices there
exists a weighted graph H with O(n/e?) edges that e-spectral
approximates G.
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Resistor networks and leverage scores

In the recitations we viewed graphs as resistor networks. In
particular, the effective resistance between two vertices a, b was
defined to be the voltage difference v(a) — v(b) when flowing one
unit of current to a and out of b (i = e(a) — e(b)).

Rert(a, b) = (e(a) — e(b)) L™ (e(a) — e(b)).

Definition
The leverage score of an edge e is defined by £ = weReft(e).

We proved that /. is the probability edge e will be included in a
random spanning tree (suitably sampled according to the weights).
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A probabilistic proof of a weaker statement

Theorem

For every € > 0 and every weighted graph G on n vertices there
exists a weighted graph H with O(nlog(n)/c?) edges that
e-spectral approximates G.

Algorithm. For a parameter ¢ to be set later on, include each
edge e of G to H independently with probability pe = cf. and set
its weight to be wy(e) = wg(e)/pe.

There is a technical issue - an edge e might have p. > 1 (as ¢ will
be chosen larger than 1). To solve this we split every edge e to
several edges (which does not affect the Laplacian).

Note, the above algorithm can be thought of as taking the union
of ¢ uniformly sampled MST (though not quite).
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A probabilistic proof of a weaker statement - analysis

We first show that the graph is sparse in expectation.
E[En] =) pe=c) Le.
e e

Recall that
le = PTr[e S T] = ET[leET]-

Thus,

Zee = ZET[IeET] =Er ZleeT] =n—1.
e e e

Thus, E[|Ey|] = ¢(n—1). By the Chernoff bound, except with
probability, exp(—cn), we have |Ey| < 2cn.
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A probabilistic proof of a weaker statement - analysis

As for the Laplacian,

ElLy] =E|> WH(e)Le] = E[wy(e)ILe.
Now,
Elwi(e)] = pe - Wff) — woe),
and so

E[Ly] = Z we(e)le = Lg.
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A probabilistic proof of a weaker statement - analysis

For a symmetric matrix A let amin(A), max(A) denote the
smallest and largest eigenvalues of A, respectively.

Theorem (Matrix Chernoff Bound)

Let Xq,..., X, be independent random PSD matrices of bounded
norm ||X;|| < r for all i € [m]. Let X =>"", X; and denote
amin = Amin(E[X]), @max = @max(E[X]). Then, for every £ > 0,

Pr[amin(x) < (1 - 5)&min] < n-exp (_520_4min/3r)a
Pr[amax(x) > (1 + 5)55max] < n-exp (_52dmax/3r)-
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A probabilistic proof of a weaker statement - analysis

Consider the matrix ) )
+/2 +/2
X=L/"LyL;

We have that
E[X] = ELLuLy?] = LEPELaLY? = L PLeLl? =,

where, note, I is the projection to the image of Lg.

We wish to apply the Chernoff bound but I has 0 as an
eigenvalue, rendering the (lower) Chernoff bound ineffective. To
get around this technicality, we work in the image of IN.
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A probabilistic proof of a weaker statement - analysis

Let 91, ...,%, be an orthonormal basis of R" composed of
eigenvectors of Lg with corresponding eigenvalues
0=p1 <p2<---<pp So,

Lo = pitpih/ .

i=2

Let B be the n x (n — 1) matrix with column i € [n — 1] equal
Pi+1. Note that

M=LLeLy? = Z¢ b

and that
Z,.1=BTNB.
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A probabilistic proof of a weaker statement - analysis

For applying Chernoff, it will be convenient to write

B'XB =) B'X.B,

where

X — %LJg/zLeLJGr/2 with probability pe
“ o with probability 1 — pe,

and we recall

E[B"XB]=B'E[X|B=B'NB=1Z,_;.
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A probabilistic proof of a weaker statement - analysis

We turn to bound the norm of BTXa,bB. For that it suffices to
bound the norm of X, 5.

ILEPL, 5L (| = |[LE?(e(a) — e(b))(e(a) — (b)) TLE |
= ((e(a) — e(B)TLY?) (L% (e(2) — (b))
= (e(a) — e(b))"LE(e(a) — e(b))
= Reff(a, b)
Recall that
Pa,b = Cga,b = CWa,bRefF(aa b);

and so |BTX, ;B < [[X,] < L.
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A probabilistic proof of a weaker statement - analysis

By the matrix Chernoff bound, except with probability
2n - exp(—ce?/3), we have that

1—e < amin(BTXB) < omax(BTXB) < 1 +e¢.

Hence,
(1-¢)Z,_1<B™XB=(1+¢)Z, 1.

Note BB” = M. Hitting with B and BT from the left and right,
respectively, we conclude

(I-g)NxNXNx(1+¢)N.
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A probabilistic proof of a weaker statement - analysis

As X = LE2LyLE? and since LY =LY% = LE?n,
nxn = N 2Ll ?n = L2,

Thus,
(1—eN<xLPLuLli? <1 +o)n.

Hitting by L¥/? on the left and right,
(1-e)lg<NLyN<(1+e)Lg,
from which it follows that

(1 - 8)'.(; <Ly (1 + E)L(;.
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A probabilistic proof of a weaker statement - analysis

To conclude the proof, we need to choose ¢ such that, say,
2n - exp(—ce?/3) < 1/2. We thus take ¢ = O(log(n)/?). Hence,

|Enl < O(nlog(n)/<?).
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Linear Sized Sparsifiers

As in the previous section, we consider

_ 1 +/2 +/2
n=L L6l

= |.JGF/2 <Z Wab'—ab) L2/2

abeE

= 3" warLE(e(a) — e(b))(e(a) —e(b) TLE/?
abceE

= lthab,

abeE

where

Pap = VWarL &> (e(a) — e(b))
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Linear Sized Sparsifiers

Thus, it suffices to solve the following problem. Given £ > 0 and
vectors Y1, ...,%,m € R" in isotropic position

> iy =T,
i=1

find a subset S C [m], of size |S| = s = O(n/e?), and weights
(ci)ies such that

1-9)Z< ) vy <(1+e)T.

ieS
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Proof strategy

The algorithm for computing S and the weights is iterative. At
iteration j = 1,...,s, an element v; will be added to S (i; € [m])
with a suitable weight ¢;. An element may be chosen more than
once.

We will maintain the invariant that for every j, the matrix

satisfies
—n+ N < Oémin(Aj) < amax(Aj) < n+uvj.

for some parameters A, v > 0.
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The barrier functions

Tracking only the smallest and largest eigenvalues does not seem
to carry sufficient amount of information. Instead, the key idea is
to record a suitably chosen potential function of all eigenvalues.

Let A be an n X n symmetric matrix with eigenvalues
ay < -+ < a,. We define the upper and lower barrier functions

CD”(A):Z 1 =Tr ((uZ — A)7Y),
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The barrier functions

_“\' ° 4 ks 12
\\ \ \\
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Figure: The upper barrier function with (a1, s, a3) = (1,2,6).
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The barrier functions

Figure: The lower barrier function with (aq, az, a3) = (1,2,6).
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The barrier functions

Note that for every u > o, and £ < ag,

1 >4 1
bu(A) =" ,m)

ap < u—

Instead of only considering amin, &max, We maintain an invariant on
the barrier functions. For j = 0,1,...,s, we define

up=n+uvj
€j:—n+)\j,

and maintain the invariant

P (A))
e (A))

<1,
<1.
(A) <
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Initialization

Initially, we set S = (), and so Ag = 0. Hence,

o "1 n
O0(R) =D = =1,
“~ up Uo
1 n
P (Ao) = ZTZO =T L.
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The upper barrier functions

How does the upper barrier function changes under a rank one
update? This you resolved in the problem set. In particular, you
proved

Lemma (Sherman-Morrison)

Let B be a nonsingular symmetric matrix. Let 1p € R" and c € R,
Then,
B _ Ty-1_ g-1 g Bl TB!
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The upper barrier functions

Substituting B = uZ — A, we get

OU(A + cppT) = Tr ((uz ~A- cqupT)—l)
Tr ((uT — A)_l) + A(u)
®4(A) + A(u),

= — c1pT(uCI—A)—11p Ty ((uI—A)_ldn,bT(uI—A)_l)

. pTWI =AY T (I -A)
Cl—cpT(uZ - A 1/c—ypT(uZ — A1y’
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The upper barrier functions

The upper potential function thus increases under a rank one
update by A(u). We want to counteract this increase by increasing
u. Namely, we want to be able to choose %, ¢; such that

OU(A)) > PUHU(A; + i) ).
We compute
OUTU(A +cppT) — OU(A) = OUTU(A +cypypT) — OUHU(A)
+ OUTY(A) — dY(A)
= A(u+v) + SUH(A) — dU(A).
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The barrier functions
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The upper barrier functions

Recall that

YT (ut+0) T -A)
A Y) = ey Tt 0T~ A) Ty

Thus, it suffices to have

YT ((u+0)T - A) %
du(A) — duTu(A)

Ol

> T (u+0)T —A) Ly +
=" Uat,

where

((u+v)Z —A)2
dU(A) — dutv(A)

Ua = ((t+v)T -A) +
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The upper barrier functions

Thus, we have found a clean condition that imply we can add v to
S with weight ¢ by increasing v by v and without increasing the
upper barrier function. We summarize this in the following claim.

Ol

> Upp =  OUTU(A 4 cypypT) < DU(A).
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The lower barrier functions

Define

(A= (£+\)T)2
Ly =

(A _ 1
— Dppa(A) - Oy(A) (A= (E+AZ)™

Similar to the previous claim, one can show

<YTLlay = Pra(A+cyyp’) < Oy(A).

Ol
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The inductive argument

It remains to show that there exist ¥; and a weight ¢ such that

OUTY(A + i) < 9U(A),
Op A (A + capih]) < Dy(A).
By the two claims, it suffices to prove that there exists i € [m]

such that

¥ Untp; < ] L.

We can then take any weight c in between. By an averaging
argument, it suffices to prove that

D Uathi <> 9] Laghi.

i=1 i=1
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The inductive argument

We first prove the following claim.

For every matrix B,

> %/ By = Tr(B).
i=1

As ¢ "Bt = Tr(1p " By) = Tr(1p1p T B), we have

Y %! Byi=) Tr(yip/B)=Tr ((Z wﬁ) B) = Tr(B).
i=1 i=1

i=1
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The inductive argument

Recall,

((u+v)Z —A)2
oU(A) — dutv(A)

Ua = ((u+0v)T — A +

“ 1
>l Uag; < — + 0U(A).
i=1 v
By the previous claim,

Tr (((u+v)T — A)7?)
OU(A) — dutv(A)

> b Uatp; = Tr(Ua) = ©“1(A) +
i=1
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The inductive argument

Now, as we consider u > amax(A), we have ®UTV(A) < dU(A). As
for the second term,

%cb“(A) = Z (12 =-Tr((uZ-A)?).

By convexity,

OUTU(A) — 9U(A) _

” 8U¢U+U(A)'
Hence,
Tr (((u+v)T — A)7?) < 1
OU(A) — Putv(A) T w
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The inductive argument

Similarly, one can prove that

1

T

Z’@b: LA¢/ > X - 17_)\
i=1 (A)

Try to prove that by yourself. This time, the analog of the
statement ®“TV(A) > ®Y(A) for all u > amax(A) is a bit trickier,
and is given by the following claim.

For every { < amin(A) and X < 1/®,(A), it holds that

1

S
oA

dpa(A) <
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Setting the parameters

By the above, we can take any v, A such that

1 1 1
S TOUA) s -
v o (A)
forall j=0,1,...,s = cn. Recall,
amax(As) < u —;—n+vcn—;<(vc+l)n—l
max s) = Hs ¢u5(AS) - CD“S(AS) — I
1
Amin(Ag) > ls + = —n+ Acn + >(Ac—1)n+1.
AW ooy - Y
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Setting the parameters

By our invariant, we can take any v, A for which

1+1<1 1
v A 1=

For every such choice, we have

Omax(As) < n+ven—1 < ve+1
Omin(As) — —n+AXen+1 = Ac—1"
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Setting the parameters

The example presented in Spielman considers \ = % which leads us
to take v = 2. Setting, say, ¢ = 13 yields a ratio of 13. By dividing
all weights by /13 we get

1
V13

You are encouraged to play with the numbers to improve the ratio.

Lo <Ly <V13Lg
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