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The Loewner order

The Loewner (partial) order

Recall from the problem set.

Definition

Let A,B be n× n symmetric matrices. We write A<B if A−B is
PSD (which recall we write as A− B< 0).

It is best to first consider the definition for diagonal matrices A,B.
Note that A<B iff Ai ,i ≥ Bi ,i for all i ∈ [n].

A useful property that will allow us to prove a more general
statement is

A<B =⇒ CTAC<CTBC for all C .
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The Loewner order

The Loewner order and eigenvalues

Assume A,B have a common basis of eigenvectors, with
corresponding eigenvalues α1, . . . , αn and β1, . . . , βn, respectively.
Then,

A<B ⇐⇒ ∀i ∈ [n] αi ≥ βi .

Assume α1 ≥ · · · ≥ αn are the eigenvalues of A, and
β1 ≥ · · · ≥ βn the eigenvalues of B. Then,

A<B =⇒ ∀i ∈ [n] αi ≥ βi

even under no assumption on the eigenvectors. The other direction
is (generally) false.
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The Loewner order

Loewner order and the spectral norm

Claim

For every symmetric matrix A,

‖A‖ ≤ c ⇐⇒ −c ≤ αn ≤ α1 ≤ c

⇐⇒ −cI 4A4 cI.

Recall that if W is the random walk matrix of G , then G is a
(1− ω)-spectral expander iff ‖W − J‖ ≤ ω. This is equivalent to

−ωI 4W − J4ωI.
An equivalent formulation, focusing on the normalized Laplacian is
the following multiplicative-type statement.

(1− ω)(I − J)4I −W4 (1 + ω)(I − J).
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Spectral approximation

Spectral approximation

Definition

Let G ,H be graphs on n vertices.

We write G <H if LG <LH .

We say that H an ε-spectral approximation of G if

(1− ε)LG 4LH 4 (1 + ε)LG .

Spectral approximation is a strong notion. It implies closeness of

conductances,

eigenvalues,

effective resistances.
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Spectral approximation

Expanders as spectral approximators of the complete graph

For every ε > 0 there exists c = c(ε) such that for every n there
exists a graph G with at most cn edges that ε-approximates the
complete graph with self loops. In particular, Ramanujan graphs
achieve c = O(1/ε2).

Can we spectral-approximate every graph with a sparse graph?

Theorem

For every ε > 0 and every (undirected) graph G on n vertices there
exists a weighted graph H with O(n/ε2) edges that ε-spectral
approximates G.
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Resistor networks

Resistor networks and leverage scores

In the recitations we viewed graphs as resistor networks. In
particular, the effective resistance between two vertices a, b was
defined to be the voltage difference v(a)− v(b) when flowing one
unit of current to a and out of b (i = e(a)− e(b)).

Reff(a, b) = (e(a)− e(b))TL+(e(a)− e(b)).

Definition

The leverage score of an edge e is defined by `e = weReff(e).

We proved that `e is the probability edge e will be included in a
random spanning tree (suitably sampled according to the weights).
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A probabilistic proof of a weaker statement

Theorem

For every ε > 0 and every weighted graph G on n vertices there
exists a weighted graph H with O(n log(n)/ε2) edges that
ε-spectral approximates G.

Algorithm. For a parameter c to be set later on, include each
edge e of G to H independently with probability pe = c`e and set
its weight to be wH(e) = wG (e)/pe .

There is a technical issue - an edge e might have pe > 1 (as c will
be chosen larger than 1). To solve this we split every edge e to
several edges (which does not affect the Laplacian).

Note, the above algorithm can be thought of as taking the union
of c uniformly sampled MST (though not quite).
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A probabilistic proof of a weaker statement - analysis

We first show that the graph is sparse in expectation.

E[|EH |] =
∑
e

pe = c
∑
e

`e .

Recall that
`e = Pr

T
[e ∈ T ] = ET [1e∈T ].

Thus,

∑
e

`e =
∑
e

ET [1e∈T ] = ET

[∑
e

1e∈T

]
= n − 1.

Thus, E[|EH |] = c(n − 1). By the Chernoff bound, except with
probability, exp(−cn), we have |EH | ≤ 2cn.
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A probabilistic proof of a weaker statement - analysis

As for the Laplacian,

E[LH ] = E

[∑
e

wH(e)Le

]
=
∑
e

E[wH(e)]Le .

Now,

E[wH(e)] = pe ·
wG (e)

pe
= wG (e),

and so
E[LH ] =

∑
e

wG (e)Le = LG .
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A probabilistic proof of a weaker statement - analysis

For a symmetric matrix A let αmin(A), αmax(A) denote the
smallest and largest eigenvalues of A, respectively.

Theorem (Matrix Chernoff Bound)

Let X1, . . . ,Xm be independent random PSD matrices of bounded
norm ‖Xi‖ ≤ r for all i ∈ [m]. Let X =

∑m
i=1 Xi and denote

ᾱmin = αmin(E[X]), ᾱmax = αmax(E[X]). Then, for every ε > 0,

Pr[αmin(X) ≤ (1− ε)ᾱmin] ≤ n · exp (−ε2ᾱmin/3r),

Pr[αmax(X) ≥ (1 + ε)ᾱmax] ≤ n · exp (−ε2ᾱmax/3r).
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A probabilistic proof of a weaker statement - analysis

Consider the matrix
X = L

+/2
G LHL

+/2
G

We have that

E[X] = E[L
+/2
G LHL

+/2
G ] = L

+/2
G E[LH ]L

+/2
G = L

+/2
G LGL

+/2
G = Π,

where, note, Π is the projection to the image of LG .

We wish to apply the Chernoff bound but Π has 0 as an
eigenvalue, rendering the (lower) Chernoff bound ineffective. To
get around this technicality, we work in the image of Π.
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A probabilistic proof of a weaker statement - analysis

Let ψ1, . . . ,ψn be an orthonormal basis of Rn composed of
eigenvectors of LG with corresponding eigenvalues
0 = µ1 < µ2 ≤ · · · ≤ µn. So,

LG =
n∑

i=2

µiψiψ
T
i .

Let B be the n × (n − 1) matrix with column i ∈ [n − 1] equal
ψi+1. Note that

Π = L
+/2
G LGL

+/2
G =

n∑
i=2

ψiψ
T
i

and that
In−1 = BTΠB.
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A probabilistic proof of a weaker statement - analysis

For applying Chernoff, it will be convenient to write

BTXB =
∑
e

BTXeB,

where

Xe =

{
we
pe

L
+/2
G LeL

+/2
G with probability pe

0 with probability 1− pe ,

and we recall

E[BTXB] = BTE[X]B = BTΠB = In−1.
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A probabilistic proof of a weaker statement - analysis

We turn to bound the norm of BTXa,bB. For that it suffices to
bound the norm of Xa,b.∥∥L

+/2
G La,bL

+/2
G

∥∥ =
∥∥L

+/2
G (e(a)− e(b))(e(a)− e(b))TL

+/2
G

∥∥
=
(

(e(a)− e(b))TL
+/2
G

)(
L

+/2
G (e(a)− e(b))

)
= (e(a)− e(b))TL+

G (e(a)− e(b))

= Reff(a, b).

Recall that
pa,b = c`a,b = cwa,bReff(a, b),

and so ‖BTXa,bB‖ ≤ ‖Xa,b‖ ≤ 1
c .
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A probabilistic proof of a weaker statement - analysis

By the matrix Chernoff bound, except with probability
2n · exp(−cε2/3), we have that

1− ε ≤ αmin(BTXB) ≤ αmax(BTXB) ≤ 1 + ε.

Hence,
(1− ε)In−1 4BTXB4 (1 + ε)In−1.

Note BBT = Π. Hitting with B and BT from the left and right,
respectively, we conclude

(1− ε)Π4ΠXΠ4 (1 + ε)Π.
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A probabilistic proof of a weaker statement - analysis

As X = L
+/2
G LHL

+/2
G and since ΠL

+/2
G = L

+/2
G = L

+/2
G Π,

ΠXΠ = ΠL
+/2
G LHL

+/2
G Π = L

+/2
G LHL

+/2
G .

Thus,
(1− ε)Π4L

+/2
G LHL

+/2
G 4 (1 + ε)Π.

Hitting by L
1/2
G on the left and right,

(1− ε)LG 4ΠLHΠ4 (1 + ε)LG ,

from which it follows that

(1− ε)LG 4LH 4 (1 + ε)LG .
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A probabilistic proof of a near-linear sized sparsifiers

A probabilistic proof of a weaker statement - analysis

To conclude the proof, we need to choose c such that, say,
2n · exp(−cε2/3) < 1/2. We thus take c = O(log(n)/ε2). Hence,

|EH | ≤ O(n log(n)/ε2).
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Linear Sized Sparsifiers

Linear Sized Sparsifiers

As in the previous section, we consider

Π = L
+/2
G LGL

+/2
G

= L
+/2
G

(∑
ab∈E

wabLab

)
L

+/2
G

=
∑
ab∈E

wabL
+/2
G (e(a)− e(b))(e(a)− e(b))TL

+/2
G

=
∑
ab∈E

ψT
abψab,

where
ψab =

√
wabL

+/2
G (e(a)− e(b))
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Linear Sized Sparsifiers

Linear Sized Sparsifiers

Thus, it suffices to solve the following problem. Given ε > 0 and
vectors ψ1, . . . ,ψm ∈ Rn in isotropic position

m∑
i=1

ψiψ
T
i = I,

find a subset S ⊆ [m], of size |S | = s = O(n/ε2), and weights
(ci )i∈S such that

(1− ε)I 4
∑
i∈S

ciψiψ
T
i 4 (1 + ε)I.



Spectral Graph Sparsification

Linear Sized Sparsifiers

Proof strategy

The algorithm for computing S and the weights is iterative. At
iteration j = 1, . . . , s, an element ψij will be added to S (ij ∈ [m])
with a suitable weight cj . An element may be chosen more than
once.

We will maintain the invariant that for every j , the matrix

Aj =

j∑
k=1

ckψikψ
T
ik

satisfies

−n + λj ≤ αmin(Aj) ≤ αmax(Aj) ≤ n + υj .

for some parameters λ, υ > 0.
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Linear Sized Sparsifiers

The barrier functions

Tracking only the smallest and largest eigenvalues does not seem
to carry sufficient amount of information. Instead, the key idea is
to record a suitably chosen potential function of all eigenvalues.

Let A be an n × n symmetric matrix with eigenvalues
α1 ≤ · · · ≤ αn. We define the upper and lower barrier functions

Φu(A) =
n∑

i=1

1

u − αi
= Tr

(
(uI − A)−1

)
,

Φ`(A) =
n∑

i=1

1

αi − `
= Tr

(
(A− `I)−1

)
.



Spectral Graph Sparsification

Linear Sized Sparsifiers

The barrier functions

Figure: The upper barrier function with (α1, α2, α3) = (1, 2, 6).



Spectral Graph Sparsification

Linear Sized Sparsifiers

The barrier functions

Figure: The lower barrier function with (α1, α2, α3) = (1, 2, 6).
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Linear Sized Sparsifiers

The barrier functions

Note that for every u > αn and ` < α1,

αn ≤ u − 1

Φu(A)
α1 ≥ `+

1

Φ`(A)
.

Instead of only considering αmin, αmax, we maintain an invariant on
the barrier functions. For j = 0, 1, . . . , s, we define

uj = n + υj

`j = −n + λj ,

and maintain the invariant

Φuj (Aj) ≤ 1,

Φ`j (Aj) ≤ 1.
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Linear Sized Sparsifiers

Initialization

Initially, we set S = ∅, and so A0 = 0. Hence,

Φu0(A0) =
n∑

i=1

1

u0
=

n

u0
= 1,

Φ`0(A0) =
n∑

i=1

1

−`0
= − n

`0
= 1.
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Linear Sized Sparsifiers

The upper barrier functions

How does the upper barrier function changes under a rank one
update? This you resolved in the problem set. In particular, you
proved

Lemma (Sherman-Morrison)

Let B be a nonsingular symmetric matrix. Let ψ ∈ Rn and c ∈ R.
Then,

(B− cψψT )−1 = B−1 +
c

1− cψTB−1ψ
· B−1ψψTB−1
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Linear Sized Sparsifiers

The upper barrier functions

Substituting B = uI − A, we get

Φu(A + cψψT ) = Tr
(

(uI − A− cψψT )−1
)

= Tr
(
(uI − A)−1

)
+ ∆(u)

= Φu(A) + ∆(u),

where

∆(u) =
c

1− cψT (uI − A)−1ψ
· Tr

(
(uI − A)−1ψψT (uI − A)−1

)
=

cψT (uI − A)−2ψ

1− cψT (uI − A)−1ψ
=

ψT (uI − A)−2ψ

1/c −ψT (uI − A)−1ψ
.
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The upper barrier functions

The upper potential function thus increases under a rank one
update by ∆(u). We want to counteract this increase by increasing
u. Namely, we want to be able to choose ψij , cj such that

Φuj (Aj) ≥ Φuj+υ(Aj + cjψijψ
T
ij

).

We compute

Φu+υ(A + cψψT )− Φu(A) = Φu+υ(A + cψψT )− Φu+υ(A)

+ Φu+υ(A)− Φu(A)

= ∆(u + υ) + Φu+δ(A)− Φu(A).
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The barrier functions
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The barrier functions
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Linear Sized Sparsifiers

The upper barrier functions

Recall that

∆(u + υ) =
ψT ((u + υ)I − A)−2ψ

1/c −ψT ((u + υ)I − A)−1ψ
.

Thus, it suffices to have

1

c
≥ ψT ((u + υ)I − A)−1ψ +

ψT ((u + υ)I − A)−2ψ

Φu(A)− Φu+υ(A)

= ψTUAψ,

where

UA = ((u + υ)I − A)−1 +
((u + υ)I − A)−2

Φu(A)− Φu+υ(A)
.
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The upper barrier functions

Thus, we have found a clean condition that imply we can add ψ to
S with weight c by increasing u by υ and without increasing the
upper barrier function. We summarize this in the following claim.

Claim

1

c
≥ ψTUAψ =⇒ Φu+υ(A + cψψT ) ≤ Φu(A).
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The lower barrier functions

Define

LA =
(A− (`+ λ)I)−2

Φ`+λ(A)− Φ`(A)
− (A− (`+ λ)I)−1.

Similar to the previous claim, one can show

Claim

1

c
≤ ψTLAψ =⇒ Φ`+λ(A + cψψT ) ≤ Φ`(A).
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The inductive argument

It remains to show that there exist ψi and a weight c such that

Φu+υ(A + cψiψ
T
i ) ≤ Φu(A),

Φ`+λ(A + cψiψ
T
i ) ≤ Φ`(A).

By the two claims, it suffices to prove that there exists i ∈ [m]
such that

ψT
i UAψi ≤ ψT

i LAψi .

We can then take any weight c in between. By an averaging
argument, it suffices to prove that

m∑
i=1

ψT
i UAψi ≤

m∑
i=1

ψT
i LAψi .
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The inductive argument

We first prove the following claim.

Claim

For every matrix B,

m∑
i=1

ψT
i Bψi = Tr(B).

As ψTBψ = Tr(ψTBψ) = Tr(ψψTB), we have

m∑
i=1

ψT
i Bψi =

m∑
i=1

Tr(ψiψ
T
i B) = Tr

((
m∑
i=1

ψiψ
T
i

)
B

)
= Tr(B).



Spectral Graph Sparsification

Linear Sized Sparsifiers

The inductive argument

Recall,

UA = ((u + υ)I − A)−1 +
((u + υ)I − A)−2

Φu(A)− Φu+υ(A)
.

Claim

m∑
i=1

ψT
i UAψi ≤

1

υ
+ Φu(A).

By the previous claim,

m∑
i=1

ψT
i UAψi = Tr(UA) = Φu+υ(A) +

Tr
(
((u + υ)I − A)−2

)
Φu(A)− Φu+υ(A)

.
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The inductive argument

Now, as we consider u ≥ αmax(A), we have Φu+υ(A) ≤ Φu(A). As
for the second term,

∂

∂u
Φu(A) = −

m∑
i=1

1

(u − αi )2
= −Tr

(
(uI − A)−2

)
.

By convexity,

Φu+υ(A)− Φu(A)

υ
≤ ∂

∂u
Φu+υ(A).

Hence,
Tr
(
((u + υ)I − A)−2

)
Φu(A)− Φu+υ(A)

≤ 1

υ
.
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The inductive argument

Similarly, one can prove that

m∑
i=1

ψT
i LAψi ≥

1

λ
− 1

1
Φ`(A) − λ

.

Try to prove that by yourself. This time, the analog of the
statement Φu+υ(A) > Φu(A) for all u > αmax(A) is a bit trickier,
and is given by the following claim.

Claim

For every ` < αmin(A) and λ < 1/Φ`(A), it holds that

Φ`+λ(A) ≤ 1
1

Φ`(A) − λ
.
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Setting the parameters

By the above, we can take any υ, λ such that

1

υ
+ Φuj (Aj) ≤

1

λ
− 1

1
Φ`j

(Aj )
− λ

for all j = 0, 1, . . . , s = cn. Recall,

αmax(As) ≤ us −
1

Φus (As)
= n + υcn − 1

Φus (As)
≤ (υc + 1)n − 1,

αmin(As) ≥ `s +
1

Φ`s (As)
= −n + λcn +

1

Φ`s (As)
≥ (λc − 1)n + 1.
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Setting the parameters

By our invariant, we can take any υ, λ for which

1

υ
+ 1 ≤ 1

λ
− 1

1− λ
.

For every such choice, we have

αmax(As)

αmin(As)
≤ n + νcn − 1

−n + λcn + 1
≤ υc + 1

λc − 1
.
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Setting the parameters

The example presented in Spielman considers λ = 1
3 which leads us

to take ν = 2. Setting, say, c = 13 yields a ratio of 13. By dividing
all weights by

√
13 we get

1√
13

LG 4LH 4
√

13LG

You are encouraged to play with the numbers to improve the ratio.
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