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LECTURE 1
WHY ABSTRACT ALGEBRA?

It is often the case that natural algorithmic questions lead to natural combinatorial
questions. A priori it didn’t have to be the case, but it is. The reason is unclear to
me—whether it is due to the mathematical oriented researchers in computer science
or perhaps there is a deeper reason anchored at the problems themselves.
Philosophical aspects aside, in many cases, the algorithmic questions ask for an ex-
plicit construction of a certain combinatorial object such as a graph with some desired
properties. By explicit here we typically mean that the object of interest can be effi-
ciently generated, that is, there is an algorithm that given, say, the size of the object
(i.e., the number of vertices of a graph), outputs the object in polynomial-time (with
respect to its size).

In many cases, explicit constructions of combinatorial objects make use of objects and
tools from other branches of mathematics, not just combinatorics. The most relevant
to computer science seems to be algebra, in particular, linear algebra and basic alge-
braic structures such as fields, rings, groups, and polynomials over these structures.
L.e., abstract algebra. If one would erase every passage that involves algebra from
the computer science literature, I'm not sure you would be able to download this file.
What I am trying to say, if you haven’t noticed, is that algebraic structures have a key
role in theoretical computer science. Typically, they serve as tools for constructing
and analyzing combinatorial objects that, in turn, are used in algorithms. Sometimes,
however, the algebra “appears” only in the analysis (though, of course, it guides the
researcher who constructs the object). The best way to convince you of that is to see
this in action but we will have to develop the mathematical theory before we can do
that.

In this lecture, we will present four examples where algebraic structures come out of
nowhere to save the day. We will show the problems. The solutions will have to wait
until we develop the algebraic theory we need. This is going be a recurring theme
in the course. We will see problems from different branches of theoretical computer
science, coding theory, cryptography, etc which will allow us to get a taste of what
is done in these areas. Then, we will see how algebraic structures and reasoning can
be used to solve these problems. At first, it will seem to come out of nowhere. As
you will see more and more examples, it will seem more natural. If you see enough
examples, however, the whole thing (to me at least) starts to look suspicious again.
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1.1 Error correcting codes

What is an error correcting code? Consider the following scenario: Alice wants to
send a message to Bob. The message is sent over some channel, that is not perfect:
when sending a message over it, some of the received bits at the other end might be
wrong (aka flipped).

The Coding Problem asks: what kind of redundancy Alice should add to the
message, so that Bob will still be able to extract the message?

We would like to find an encoding function C' : {0,1}* — {0,1}", such that given
a message m € {0,1}*, if C(m) € {0,1}" is sent over a noisy channel and at most
(0.1)n of the received bits are flipped, the original message m is still unambiguously
recoverable from it.

Clearly, C' must be injective (thus implying, among other things n > k), but this is
obviously not enough, since we want to map different messages m; # msy to strings
in {0,1}" that are far apart. On the other hand, if our code encodes every message
in {0,1}" as a string in, say, {0, 1}2k then our "overhead" would be huge - we would
have to transmit exponentially many more bits then our original message. Our goal
then is to find such an encoding function where the tradeoff between the redundancy
of bits transmitted and the distance between encoded words is optimal.

We now give some formal definitions for the task at hand.

1.1.1 Definitions

Definition 1.1. (Hamming distance) Let x,y € X be two words of length ¢ over
some alphabet X, then we define the Hamming Distance between the words as

d(a,y) = [{i: 2 # yi}|

Definition 1.2. (Code) A function C' : ¥¥ — ¥7 . is called a Code with relative

out
distance ¢ and relative rate p if:

e Distance: For any m; # msy € {0, 1}k>

d(C(my),C(mg)) >0 -n

e Rate: It holds that

n-log |Xoue| —

is a vector space (e.g. - {0,1}") we say that C' is a linear

n
out*

In the case where X7 ,

code if Im C' is a linear subspace of X
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Before we proceed, we mention that we will adopt a common abuse of notation and
consider C' alternately as both a function and as the set of encoded codewords. That
is to say, given m € {0, 1}k, we denote by C'(m) an encoded codeword, and given
x € {0,1}", we denote by x € C' the fact that z is a codeword (i.e. - there exists an
m € {0,1}" such that C(m) = z).

Clearly, our goal is to maximize both §, p. A natural question to ask is: how good
can our code be?

1.1.2 Lower and Upper Bounds

Claim 3. (Singleton Bound) For any code C with relative distance and rate ¢, p it
holds that 6 4+ p < 1_{_%

Proof. Let C : {0,1}* — {0,1}" be a code with rate p = E and distance A =4 - n.
Consider the code C” which is given by removing the first A — 1 coordinates of any
codeword C'(m). As d(C(mq),C(mg)) > A, the function Trim : C' — C’ is injective,
as if Trim(z) = Trim(y) for some z,y € C then d(z,y) < A —1 < A. In particular,
|C’| = |C] = 2*. On the other hand, by our construction ¢/ C {0,1}" """, thus
clearly |C’| < 2n~9+1, Together, we get:

Qk‘ < 2n—d+1

Taking log and dividing over n gives the claim

]

Thus we see that we have a natural limit on how good our parameters can be. How-
ever, unlike most cases in theoretical computer science where achieving some upper
bound is a long sought after goal, there is a simple, explicit construction, that achieves
this bound:

1.1.2.1 The Reed-Solomon Error Correcting Code

Claim 4. For every 6,p >0 s.t. 0+p=1+ % , there exists an explicit linear code
with relative distance 0 and rate p.

Proof. (Reed Solomon Code) As our construction is an algebraic one, we will require
an important algebraic tool, namely: the fundamental theorem of Algebra.

Theorem 1.5. (The Fundamental Theorem of Algebra, FTA) Let F be a field and
f € Flz] be some non-zero polynomial of degree d over F, then f has at most d roots
n F
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With this, consider the following code C' : {0, 1}k — R™ given a message m =
mo,mi, -+ ,my_1 € {0,1}", we define the polynomial f,,(z) & Zf;ol m; - ' and we

encode the message by evaluating f,, over n distinct points, i.e.

C(m) = (fm(0), fm(1), .- fm(n — 1))

We first note that it is easy to verify that this is indeed a linear codeword. This is a
direct consequence of the fact that if f,,,, ., are two polynomials then

(a : fm1 + 8- fmz) (1:) = o fml(x) + 8- fmz(x)

Now, given two distinct messages my # msy € {0,1}", the distance between C/(my), C(ms)
is the number of evaluation points ¢ such that f,,, (i) # fm, (7). Equivalently, this is
the number of non-zero evaluation points of the codeword C'(m; — msy). We now in-
voke the FTA - as m; # mo, we know that f,,,_,, # 0 and that it is a polynomial of
degree at most £ — 1, and thus has at most £ — 1 roots in R. This implies that f,,,_n,
has at least n — k + 1 non zero evaluations over said range, and thus 6 -n >n—k+1
which implies d +p > 1+ % as needed.

The only problem with the above construction is that the output alphabet of the
code is big. Indeed, considering only the highest monomial in f,,, 2%~!, we have that
fm(n) = n*, ie., exponential in k.

To fix this issue, we transition our construction to the realm of finite fields. Recall
that for any prime power ¢ there exists a field F = [, of ¢ elements. We will pick
n < ¢ < 2n and further insist that ¢ will be a prime number and not just a prime
power (this is not a necessity but will ease the notation in our construction). We recall
that such a prime exists by Bertrand’s postulate, and that F = Z,, i.e. our fields has
the elements 0, 1,...,¢— 1 and addition and multiplication are defined modulu ¢ (we
will see later on in the course that this is indeed a field).

Given the above, we construct our new code RS : F¥ — F" in the same exact way -
given a message m, . .., mg_1 we define f,(z) = S miz’ € Flz]. As F is a field,
any non-zero polynomial has at most k — 1 roots in the field and the distance bound
remains intact while the output alphabet remains "small" (note that we still require
|F| > n, but this is much better than the exponential dependency we had before) [

1.1.2.2 Remarks

One might ask why go through the trouble of working over finite fields, and not simply
inerpret and evaluate the polynomial over Z,, for some arbitrary n. This is necessary
as a crucial component of our construction was the use of the FTA. Indeed, if we
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consider the polynomial f(x) = x? + x over Zg, one can easily verify that 0,2 and 3
are roots of f while deg(f) = 2.

However, requiring that the field we use has enough elements to evaluate a polyno-
mial over n points, i.e. p > n is costly in itself. The code we get would be some
function RS : Z'; — Zy. Note that as n grows to oo, so does the size of our field (a
disadvantage).

Finally, we performed the analysis of the minimal distance of the code not be assessing
the actual difference between two codewords, but by comparing the distance of any
arbitrary codeword to the zero vector, this is not a coincidence and is a useful feature
of linear codes:

Lemma 1.6. Let C' be a linear codeword of minimum distance d, then the following
holds:
d= min d(z;,z5) = min d(z,0
x1#x2C ( ! 2) 67590160 ( )
Proof. As C is a linear code, 0 € C and thus MiNg e d(z,0) > d. On the other
hand, if x;, x5 are two distinct codewords that achieve the minimal distance then
d(z1,79) = d(x1 — 22,0) = d. The lemma follows as the code is linear and thus
X1 — T9 € C ]

1.2 Expander Graphs

We will present the problem of expander graphs in short. For different (and countless)
use-cases, we want a graph that is:

1. Extremely well connected, i.e. - in order to isolate a large group of vertices we
need to remove many edges from the graph

2. Sparse (without too many edges).

Consider the clique-graph K,,, which is obviously very well connected. If we want
to remove a vertex from it, we need to erase n — 1 edges from it. If we want to
remove |S| vertices, we need to erase |S|(n — |S|) edges. This graph clearly achieves
the connecteness requirement. However, it is as far away from sparse as possible, i.e.
- for any vertex v, degv =n — 1

On the other side of the spectrum, consider an arbitrary tree-graph 7;,. In order to
remove a single vertex one need only remove a single edge and there are even cases
where removing |S| vertices can be achieved by removing a single edge. On the other
hand, this graph is clearly as sparse as possible (for a connected graph).

1-5



Finally, consider the cycle-graph C,,: this graph is still very sparse (it has n edges
compared to the minimal n — 1 edges needed to maintain a connected graph). This
graph is slightly better than the tree-graph as one must remove 2 edges to separate
the graph into two connected componenets. Better, but still very poor.

Can we have a well connected graph that is not much bigger than the tree?
Turns out we can. We will show a well connected graph with only 3n edges.

Definition 1.7. Let G = (V, E) be an undirected d-regular graph (i.e. the degree of
each vertex is d). For two subsets S,T C V we define E(S,T) = {(u,v) € E : u €
SAveT}.

We say that G is well connected if for any S C V such that |S| < n/2 we have
|[E(S,V —S)| > a-d-|S| for some constant o > 0.

Note that 1-d - |S] is the best one can hope for (in the case where E(S,S) = ¢).
We now present a construction which gives an expansion factor of 0.1 - d - s, which
is great. While being very simple to describe, the proof of the construction relies on

deep number theory tools. For more information, see for example Theorem 4.4.2 in
o

1.2.1 The Construction

Define the graph G' = (V, E') where we identify vertices with elements from Z,, and
connect each node z € Z, to 3 vertices:

1. Its multiplicative inverse ! (for z = 0 we add a self-loop)
2. Its predecessor z — 1
3. Its successor z + 1

where all calculations are over Z,. Note that this graph is 3-regular, with 3n edges.
As stated, one can prove that this graph is an expander with 0.1-3-|S| crossing edges
for every S C V of size at most p/2 (but we will not show that). Note that p need not
be a constant, and thus one can construct graphs of arbitrary size using this method.

1.3 Private Information Retrieval (PIR)

Consider the following scenario. We have a database and we want many people to
access it. We can put it on one server - a naive construction.
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Person A

Server

Person B

The Problem: In the naive construction, the server knows ¢, the queried index, is
connected to the user, and the user has no privacy. We're going to further require
that the server learns nothing from the query.

Definition 1.8. A communication protocol between two parties A, B is a se-
quence of messages:

e A sends a message a; € {0,1}"" to B
e B replies sending b; € {0,1}"™ to A
e Asends ay € {0,1}"™ to B and so forth

Given an execution of this protocol we call the sequence aq, by, as, ... the transcript
of the protocol.

We say that a communication protocol between two parties A, B has communication
complexity r if there exists a transcript between the two parties such that |a;| +
|b1|—|—|a2\+~-:7‘

A natural question is - what is the communication complexity under our requirements?
One can show that in this model the only solution is for the server to send the the
whole DB in response to a query, i.e., the query complexity is the size of the entire
database.
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1.3.1 Using Two Servers

It turns out we can do much better if we use two servers, that are not allowed to

communicate.

Serverl

Person

)

Server2 q2(1)

Intuitively, think of server 1 returning b ¢; and server 2 returning b , for some random
independent bit b - obviously the two servers will learn nothing about g;.
The original paper showed a construction for the two-server model that satisfies the

privacy requirement, using r = O(n%) communication bits. Recently, a protocol was
constructed which requires only r = O(2V18™) = n°() bits of communication.

1.4 Randomness Mergers

1.4.1 The setup

Before we start, we give some basic definitions:

Definition 1.9. Let X, Y be a random variables over some universe (), we define the

following;:

e The support of X:
Sup (X) ={we Q: Pg{[x:w]>0}
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o If XY have the same distribution we will denote this by X ~ Y

o We define the statistical distance between the distributions:

Prle=ul=Priy=u

sd(X,Y) = % >

weN

We denote the case where sd(X,Y) < e by X ~, Y and we say that X is e-close
toY

e Finally, in the case where Q2 = {0, 1}k, we denote the uniform distribution over
Q by Uy

Consider the following scenario: we are given access to two random variables X, Y
such that Sup (X),Sup (Y) C {0,1}" and:

e Either X ~ U, or Y ~ U, (we don’t know which)
e The random variables X, Y may be correlated

Our goal is to describe an algorithm, such that given X and Y as inputs, we produce
a random variable Z such that, say, Z ~ Ujg.,, formally:

Definition 1.10. A function Mer : {0,1}" x {0,1}" — {0,1}" is called a perfect
randomness merger with output length ¢, if given two (possibly correlated) random
variables X,Y such that X ~ U, or Y ~ U,,:

Mer(X,Y) ~ U,

Where we define the output of Mer(X,Y') as follows: draw two instances z ~ X,y ~ Y
and output Mer(z,y)

n

-9) :
X
merger Z @

Sadly, our next task is to show that no such function exists.
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1.4.2 What cannot be achieved

Claim 11. There are no perfect randomness mergers with output length 1

Proof. Before we prove the claim, one might ask: why not xor the random variables,
i.e., Mer'(X,Y) =X @Y7 It is not hard to check that this works in the case where
X,Y are independent, but letting X ~ U, and Y = X, clearly Mer’(X,Y) = 0. We
now turn to prove the general case. Let F : {0,1}" x {0,1}" — {0, 1} be an arbitrary
function. Consider two cases:

e If there exists an 25 € {0,1}" such that zo determines F, i.e. F(xg,y) = b for
any y € {0,1}", then we can let X = zg and Y ~ U,. It is easy to see that
F(X,Y)=0b,ie, F(X,Y) is constant

e If on the other hand for any x € {0, 1}" there exists yo, y; such that F(z,yo) =
0, F(x,y1) = 1 then we do the following - define two functions Yy, Y; : {0,1}" —
{0,1}" such that Yy(z) = yo, Y1(x) = y1 and define X ~ U,,Y = Y((X). Again,
it is easy to verify that F/(X,Y) =0

]

1.4.3 What can be achieved

Clearly, our hopes were too high. To achieve our goal we lower our expectations
two-folds:

e First, we allow our merger some extra, independent randomness

e Secondly, we require that the output of the merger be e-close to a uniform
distribution

Formally:

Definition 1.12. A function Mer : {0,1}" x {0,1}" x {0,1}* — {0,1}" is called
a randomness merger with output length ¢ and error €, if given two (possibly
correlated) random variables XY such that X ~ U, or Y ~ U,:

Mer(X, Y, Ud) e Ug

Where we define the output of Mer(X,Y,Uy) as follows: draw three instances x ~
X,y ~Y and r ~ U, (independently of X,Y") and output Mer(z, y, )
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Note that if d = n then one could trivially construct the randomness merger Mer(-, -, Uy) =
Uy, thus our goal is obviously to construct such a function for d < n. In a fairly re-
cent line of work it was shown that one can construct a randomness merger using

d ~ 2logn extra bits of randomness. We now present the construction of such a
merger. It is interesting to note that the correctness of the construction relies on the
resolution of (the finite case of) a long standing conjecture in the field of geometric
measure theory (see 7).

The randomness merger is constructed as follows:

1. Partition X and Y into -2 "blocks" of length log n bits (X1,..., X » Y}, ..., Y = )

logn logn logn

2. Choose a prime p s.t. logp ~ logn
3. Choose random numbers A and B , independently and uniformly over Z, — {0}

4. Interpret the blocks X; and Y; as elements of Z, and define Z;, = (A- X;+ B-Y;)
mod p

logn

5. Interpret each output Z; as a binary string in {0, 1}

6. Finally, output (Z1,...,Z n_)

logn

Interestingly, this simple and elegant construction is a randomness merger with error
e=0 (%), as required.
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LECTURE 2

THE FUNDAMENTAL THEOREM OF ALGEBRA; GROUPS
- THE BASICS

In this lecture, we will discuss the Fundamental Theorem of Algebra while exploring
the number systems N C Z C Q € R C C. In retrospective, one can think of
this process emerging so that the theorem will hold. The extension of some of these
number systems from their prior will be abstracted later in the course and so it is
beneficial to see the ideas involved on a familiar ground. I will mostly follow Chapters
1,2 of Stewart’s excellent book on Galois Theory Stewart [2015].

2.1 The Familiar Number Systems

Solving polynomial equations, despite its boring reputation, has a fascinating history
and required some significant psychological leaps from the very best of mathemati-
cians (and it still does from the best of students). Slowly but surely, mathematicians
extended their “number systems” when encountered with a problem expressed within
the known number system whose solution was “outside” of it. In this section we
briefly review this process. Some of the ideas that are required for extending these
number systems will be abstracted later in the course and so it is beneficial to recall
these ideas when applied at a familiar ground which we, at the very least, think we
understand.

It all started with the set {1,2,3,...} which by itself is a completely non-trivial
concept. It was highly abstract a few thousand years ago. It also didn’t help that
this set is infinite. Even today, many high school students are confused about the
alleged paradox that every number is “finite” yet there are infinitely many of them.
In this number system we can solve equations like x +1 = 2. I will leave this as an
exercise.

2.1.1 Enter zero

The acceptance of zero as a legitimate number took some getting used to. The ancient
Greeks, for example, had no symbol for zero as they baffled with deep philosophical
questions such as “how can nothing be something?”. Zero was used as a placeholder
quite early in positional number systems like we use today, but it was considered
nothing more for years to come. We write N = {0, 1,2,...} for the natural numbers.
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Yes, we consider 0 to be a (very) natural number. In fact, when we come to formalize
the notion of a number system using an axiomatic approach, the existence of (the
abstraction of) 0 will be one of the axioms. More so, it will be the only number we
demand to exist within the number system.

2.1.2 Negative numbers

Don’t get me started about the negatives which allows one to solve equations like
x + 1 = 0. It suffices to say that even at 1759, the English mathematician Maseres
wrote that negative numbers “darken the very whole doctorines of equations and make
dark the things which are in their nature excessively obvious and simple”. Leibniz is
considered to be the first to systematically employ negative numbers. He did so for
his development of Calculus. I don’t know about you, but I always imagined that
Calculus is light years away from any discussion about negative numbers. Anyhow,
denote the whole numbers by Z = {0,+1,42,...}. The letter Z comes from the
German word “Zahl” which translates to a teller in English.

2.1.3 Be rational

What about 2z = 17 Positive fractions seem to have been recognized earlier than
zero and the negatives. However, there is some complexity involved in their formal
definition. We are used to think of rational numbers as, well, numbers or more
precisely as a pair of whole numbers. In particular, we write Q = {¢ | a,b € Z, b # 0}.
However, we identify some of the numbers in this set such as % and %. So, in fact, a
rational number is not quite a pair of Z elements but rather a set of such pairs. More
precisely, a rational number is an equivalent class with respect to some equivalent
relation. However, we are so used to this that we suppress this fact and, in particular,
write things like Z C Q which formally does not make much sense. What we actually
mean is that there is a copy of Z “embedded” in Q. This copy is given by {{ | a € Z}
and it behaves like Z when we add and multiply unlike, say, {1 | a € Z} U {0}.

Exercise 1. The Egyptians only considered fractions of the form % fora €{1,2,3,...}
(and 2 but let’s ignore that one). One nice and not completely trivial fact is that

any fraction ¢ with 1 < a < b can be written as a finite sum of distinct Egyptian

fractions. Can you prove that?

Later in the course we will abstract this process of taking a number system like Z,
some of whose elements cannot be inverted, and “embed” it in a bigger number system
that is closed to inversion.
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2.1.4 Get real

Attempts made by ancient mathematicians who recognized only Q as the set of num-
bers to solve x? = 2 is a famous story in the history of Mathematics. Once again, the
realization that this is impossible came as a philosophical shock.

Ezercise 2. Here is a lesser-known proof sketch for the insolvability of 22 = 2 in Q.
Try to fill in the details. Assume by way of contradiction that ¢ is a solution to 22 =2

with a,b € N and b minimal among all such solutions. Consider now the expression
2b—a
a—b "

Extending Q to R is completely non-trivial. It involves taking the topological closure
of Q with respect to the natural metric and by that close the (many many) “holes”
in Q. This is more or less done by adjoining the limits of all convergent sequences in
Q. Anyhow, whatever R is, it is fairly safe to say that we all feel comfortable with it.
We don’t call them real numbers for nothing!

2.1.5 Complex numbers

What about solving 2% + 1 = 07 We are all programmed to shout i (or 4i) but deep
inside one might have the feeling that 7 is just a made up symbol-a cheat if you will.
I mean, v/2, I can get-it is the limit of a sequence of approximate solutions to z2 = 2.
But i is just, well, not real... Like the zero and the negative numbers, ¢ wasn’t greeted
with a smile by humankind. It was more like, well, we really need this guy to solve
equations, but it was considered as this formal symbol that one can manipulate but
dare not consider as “real”.

Let’s elaborate on that. We all know how to solve the general quadratic equation
ax® + bx + ¢ = 0. We have this neatly wrap expression for the solutions

which I'm positive you can cook up by yourself. This formula, expressed quite differ-
ently, was known already to the Babylonians some 3600 years ago. Applying this to
2?2 +1 = 0 doesn’t give any meaningful answer in R as the /- is applied to a negative
number. This wasn’t a problem to i-non-believers. For them, it was simply Math’s
way of telling us that there is no solution.

1 came to hunt the human race when people were finally able to solve cubic equations.
It turns out that there is a general solution to such equations and one can derive it
in a page or two (see Stewart’s book). However, there is a significant amount of
trickery involved and it was an open problem to come up with a solution for quite
some time. It was only at around 1535 that the general cubic equation was solved by
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Fontana (nicknamed Tartaglia). First, using some standard trickery, one can reduce
the general cubic equation to the form 23 + pz + ¢ = 0. A general solution is then
given by, get ready for this,

3l q @ s q @ p
x_\/ 2+\/4+27+\/2 Vi "o
Impressive no doubt. But, here is the catch. If we apply this to 3 — 152 —4 = 0 which

clearly has a solution x = 4, we get x = \3/2 + /=121 + {3/2 — +/—121. Where is our
beloved 47 Turns out that if you are willing to consider i as if it was a legitimate

number, assuming all rules of arithmetics apply to him, you can extract 4 out of this
mess.

You see, it is not just that 23 — 152 — 4 has solutions outside of the reals which you
may or may not choose to consider as real. It is that even if these solutions are real
as 4, our way of finding them gets out of R before landing back safely. You might
not be so impressed. After all, this is just one way of finding a solution. Perhaps
the undesired visit of i is due to the algorithm (the formula) not the problem itself.
Well, turns outs that one can prove, in some formal sense, that any solution that is
expressed by radicals (square roots, cubic roots, etc) will go through ¢ even in some
cases in which all roots are real. Indeed, Mathematics is trying to tell us something...
Soon enough we’ll start talking about “field extensions”. The uncomfortable feeling
we may have had with i—adding this artificial solution—will come to hunt us again.
So, we better surface these feelings at a familiar ground.

At any rate, we define C = {a +ib | a,b € R} where addition and multiplication are
given by “extending” these operations from R together with the rule > = —1. So,
multiplication is given by

(a + bi)(c+ di) = ac + adi + bei + bdi?
= (ac — bd) + (ad + bc)i.

Going back to our friend, v/2. Come to think of it, if something is not real then it is
V2. T mean it is an endless pattern-less string of digits. There is not enough atoms
in the universe to represent this idealized number. So, I claim you have never seen
the real v/2 in your life!
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2.2  WIill this ever end?

One of the many cool features of C is that it is the end of this game. C has the
remarkable property that any polynomial equation with coefficients in C has all of
its solutions in C. That’s a great deal! We added only this single weird symbol i so
as to obtain/invent/discover, you choose, a solution to the specific simple equation
2> +1 = 0 and what I'm saying is that by doing that, we got all solutions to all
polynomial equations for free even if the coefficients have ¢’s in them! Later in the
course we will refer to number systems that have this property algebraically closed.
When I say that C is the end of the game, I don’t mean that C is the only number
system with this property. I mean that it is the only one if you start from R.

This property of C is given by The Fundamental Theorem of Algebra. To state it,
recall that a solution to a polynomial equation p(z) = 0 is called a root of p.

Theorem 2.3 (The Fundamental Theorem of Algebra). A non-constant polynomial
with coefficients in C has a root in C.

From Theorem 2.3 one can deduce that a degree n > 1 complex polynomial has
exactly n roots. Some of these roots though may repeat more than once. For example,
x? — 2z + 1 can be written as (z — 1)? from which one would agree that 1 counts as
2 roots of the polynomial, whatever that means.

Theorem 2.3 wasn’t obvious even for the great mathematicians of the time. For
example, Bernoulli proposed a counterexample of degree 4. The great Euler proved
him wrong in a letter to Goldbach. Euler claimed he has a proof for all degrees n < 6.
A proof for the general case had to wait for Gauss who used trigonometric series in
his 1799’ proof.

For the Ph.D. students who are reading this, Gauss proved the theorem while being a
Ph.D. student. Just saying :) Gauss, being Gauss, subsequently gave 3 other proofs.
By now, there are many proofs, none of which is very easy, but you can fit one to a
page or two (see Stewart’s book). I'm not going to give a proof here. I'm gonna do
something even better—I'm gonna show you why the theorem is true! The proof sketch
is “topological” in nature, i.e., we're going to stretch continuous stuff in a continuous
way. Also, I am kind of going to assume that you know about polar presentation.

Proof Sketch. Say * you are looking at a polynomial p(z) = ag+ayz+- - -+ a,x™ with
a, # 0. If ag = 0 then x = 0 is clearly a root of p. So, ag € C sits somewhere in the
complex plane away from the origin. Consider the following thought experiment. Fix
a real number r > 0 and consider the circle of all x € C with modulus |z| = 7. Where
does p map this circle to? Well, I don’t quite know. But, if r is very large (compared

7

*When turned into a formal proof, replace with “Let p(z) be...
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Figure 1: A traversal in C
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Figure 2: Traversal projected in the image of p(x)
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to the coefficients and the degree n) then a,z" will be the dominating term. If it
was the only term then the image of the map of the circle would have been a circle
(in fact, n circles on top of each other) with modulus a,r". However, there are these
other pesky terms which make the actual image look like a wiggly circle. At any rate,
if r is large enough the image is almost a circle.

Now comes the punch line. Starting from the huge r you chose, start to decrease it
slowly all the way down to 0. If r is chosen large enough, we can make sure that the
wiggly shape will contain both ay and the origin. However, we know that at the end,
when r = 0, the wiggly shape will converge to the single point ay and, in particular.
As everything we do is “continuous” at some point the wiggly shape—the image of
p—must pass through the origin. O]

2.3 What else is cool about C?

Well, many things. For one, it turns out that C is very real. I am no expert, but it
seems that complex numbers are at the very least most suitable for describing Quan-
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tum Mechanics. Mathematicians like complex numbers partially because working
with complex functions is much nicer than with real-valued functions. To give some
feeling for it, if you're working with a real function and it has an annoying singularity
at some point, in R the function is “broken” into two pieces. Over C however you can
just “go around” the misbehaved point. You can do much more though. For example,
you can take a function that is defined somewhere in the complex plane but not in
other possibly huge parts of it and, if the function is nice enough, you can extend
it to more or less the whole complex plane in a unique way. It is a typical scenario
that the new function shed new light on the original, partially defined, function. One
fascinating application of such technique is to number theory and in particular to the
Riemann Zeta Function. We’ll talk a bit about it later in the course.

2.4 What does a Turing Machine think of C?

The Fundamental Theorem of Algebra is extremely useful in theoretical computer
science, coding theory, cryptography and what have you. However, computers (or
Turing Machines if you must) don’t like these infinite precision kind of number systems
like R and C. Even Q and Z are not comfortable computing over as when turning
to the analysis, one would need to keep track of the size of the computed numbers
which, at best, is daunting.

Luckily, there are “finite number systems” which, being finite, avoid these issues.
Once can compute over these finite number systems and prove theorems about them.
In particular, The Fundamental Theorem of Algebra more or less holds for these
number systems as well-not just over C. The proof, however, as you might expect
looks very different as we're working in a very different setting. Soon we will get to
these mysterious finite number systems. We will call them finite fields.

2.5 Bézout’s Theorem

Another very interesting and useful generalization of Theorem 2.3 is obtained by
viewing the whole thing geometrically. First, let’s work only over R so it will be
easier to draw things in our head. Theorem 2.3 implies that over R, a degree n > 1
polynomial p(z) has at most n roots. Geometrically, this means that the set of points
C = {(z,p(x)) | + € R} that describe the graph of p(x) in the real plane intersects
the z-axis {(z,0) | z € R} in at most n points. You can easily convince yourself that
this holds true not only for the z-axis but actually for any line {(z,y) | ax + by = ¢}
where a,b,c € R, not all zero, as long as C' does not fully contain the line (this
reservation with respect to the z-axis is hidden in the hypothesis of Theorem 2.3 that
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the degree n of p is greater than 1. This takes out the zero polynomial, whose graph
is the z-axis, out of the picture.

We call C' an algebraic curve (or simply a curve). Naturally, we say that C has degree
n. The curves that correspond to linear equations have degree 1. So, Theorem 2.3
implies that the number of intersection points between a degree n curve and a degree
1 curve in the plane is at most n - 1. What about a degree n curve and a degree m
curve? You guessed right! The number of intersection points is at most n - m. This
holds for even more general curves than “just” those of the form y = p(z). You can
mix up z,y in anyway you like. For example, zy — 1 = 0 is a degree 2 curve.

This remarkable result is called Bézout’s Theorem. In fact, more is true. If you
work over C and count repeated points of intersections correctly you can almost say
that the number of intersection points will be exactly n - m. That is not quite true—
think of two parallel lines. Turns out, though, that if you are open about changing
your geometry from the standard geometry (called affine geometry) to what is called
projective geometry, you get precisely n - m points of intersection. The projective
plane can be thought of as adding “points at infinity” to the affine plane, in which
parallel lines meet. We won’t get into this in this course (ad ahead!) but will do so
in a followup course on the fascinating subject of Algebraic Geometric codes. One of
the goals of this course is to prepare you for the next one.

Let’s close with a fun fact. In his original 1770 paper, Bézout didn’t correctly account
for multiplicities. As the theorem statement was “in the air”, one may argue (as some
critics have) that the result is neither original nor correct...

2.6 Quick Introduction to Group Theory

In the previous lecture we used the informal notion of a “number system” while having
N,Z,Q,R and C in mind. I also hinted that we’ll be interested in finite number
systems which clearly none of the above are. In this lecture we’ll start the beautiful
process of formalizing and abstracting the notion of a number system. An abstraction
that, in particular, will allow us to come up with finite number systems.

So what do we mean by a “number system”™ Well, we definitely gonna want to
have a set of “numbers” to play with. In all of the above examples, “playing” meant
that we can add, subtract, multiply and, in some cases, even divide two numbers
to obtain a third number in the set. A “number” in N for example was a natural
number. We have gotten used to those but to rigourously define such numbers one
typically resorts to Peano axioms. For example, a set-theoretic model of the natural
numbers, proposed by John von Neumann, constructs the natural numbers using
only set operations on the empty set. You think you know good old 37! According
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to this construction, 3 is defined by {0, {0}, {0, {0}}}, where 0 is the empty set. The
situation got more complicated as we moved forward. In particular, a rational number
is in fact an equivalence class with respect to a certain equivalence relationship over
pairs of “numbers” from Z.

When coming to abstract the notion of a number system, we don’t want to get into
the details of what the numbers are. In particular, we won’t get into questions like
what do they mean and are they “real” or not. We want to consider the numbers as
abstract symbols and focus on how we can playing with them.

To make life simpler, in this lecture we are going to focus on a single operation rather
than on four as we have in some of our number systems. This will make life simpler
for us but in fact there are many examples, some of which we will see, in which the
number system is naturally equipped with only one operation.

2.7 The definition of a Group

Defining our single-operation number system will be done using an axiomatic ap-
proach. Looking back at the number systems that we know, we’ll decide which prop-
erties we want to keep. Turns out we will set our heart on {0, {0}, {0,{0}}} such
properties.

2.7.1 The associative law

Let us consider Z endowed with the addition operation, ignoring multiplication for
the moment. One feature that we really like about addition is that although it is
defined over pairs of numbers, we can extend the operation to more than two operands
without having to account for the order in which we apply the operation. That long
sentence can be summarized by saying that for all a,b,c € Z, (a+b)+c=a+ (b+c¢).
This “law” is known as the associative law. It implies that the expression a 4+ b+ ¢ is
well-defined. So does a+ b+ ¢+ d, etc. We're definitely going to keep this one! Note
that not all operations are associative. We don’t have to look far: (a — b) — ¢ is not
the same thing as a — (b — ¢).

2.7.2 Neutral element

OK. Now it is time to fix the poor treatment zero got from our ancestors and consider
it as central. 0 “does nothing” when added to another element. We are going to insist
our number systems will always have such a does-nothing element. Note that with
respect to multiplication, 1 is the does-nothing element. Soon we are going to call
such an element a neutral element rather than a does-nothing element.
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2.7.3 Inverses

It is the negatives’ turn. Still with Z equipped with addition, every element a € Z
has an element that when added to a gives back 0-the neutral element. Of course,
we are talking about —a. When thinking of QQ equipped with multiplication the
corresponding element to a will be 1/a. But something about that example doesn’t
sit well-there is no “inverse” element like that which corresponds to 0. We will insist
on having such an inverse element for every element. What is typically done in
situations as in the above example is to shamefully take 0 out of the picture and
consider Q \ {0}. Sorry 0. Sometimes though it is useful and more “complete” to add
oo as the inverse of 0 (this is related to the projective geometry I eluded to last time).
Geometrically, in the Z with addition example, inverse means reflecting around 0 on
the real axis. Taking, the inverse in C\ {0} with respect to multiplication kind of
turns the unit ball {a € C\ {0} | |a] < 1} inside out (and in some sense, if insisting,
taking the omitted point 0 very far to co).

2.7.4 The formal definition

After the motivating discussion above, I think we’re ready to see the following defi-
nition.

Definition 2.4 (Group). A group is a set G together with a function f: G x G — G
such that

Associativity. Va,b,c€ G f(f(a,b),c) = f(a, f(b,c));
Neutral element. 3e € G Va € G f(a,e) = f(e,a) = a;

Inverse. Yae G 3Fbe G f(a,b) =e.

The function f is called the group law. We typically do not use this functional notation
and simply write a e b for f(a,b). So, associativity looks like (¢ @b) e c =a e (bec).
When it causes no confusion, one omits the symbol altogether and simply write ab.
When we have an additive operation in mind we write a + b even though this is not
necessarily the addition we know from N and friends. In this case we sometime write
0 for e. We say that the group is additive. Similarly, when we have a multiplicative
operation in mind, we write a - b and 1 for e. In this case we say that the group is
multiplicative. In an additive group one abbreviates and write a + a as 2a, a +a + a
as 3a etc. Similarly, in a multiplicative group we write a? for a - a, etc. Note that
then it makes sense to define a” = e. It is important to keep in mind that these are
just notations. They mean nothing and are only meant so that us human beings will
convey our intensions (somewhat like comments in a code).
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When referring to a group, we sometimes write (G, f), (G,e) or (G,+), (G,-). When
the operation is clear from context we sometimes write G for the group.

The innocent-looking Definition 3.1 is central to a fair fraction of mathematics. It is
hard to overestimate its importance. I will skip the historical development and nice
anecdotes this time but I urge you to look it up. I will be satisfied by saying that
the axioms were first written down formally by Walther von Dyck in 1882. However,
the study of group theory, even before the definition has emerged, dates at least a
century back.

2.7.5 But why this definition?

Chess is an interesting game. My eight year old son beats me more than half the
time and I am not sure it says much about his game skills. Still, only by playing
Chess I came to appreciate the rules—the axioms if you will-of the game. Prior to
this experience, it all seemed a bit ad hoc.

You just saw Definition 3.1-the rules of the game. It is too much, to say the least,
to expect of you to appreciate the definition just by staring hard at it. For that you
will need to play with groups. We will only need the very basics of group theory
but even that, I hope, will give you some insights. I will briefly mention that there
are other notions related to groups. For example, it is worth noting that (N, +) is
not a group as none of the elements, but for 0, has an inverse. Such a structure is
called a monoid—a group without the existence of inverse axoim. A semigroup does
not even require the neutral element—only associativity. We won’t touch upon these,
somewhat less central, notions. Somehow, the structure guaranteed by the properties
of a group is just enough to be extremely interesting. With hindsight, removing any
of the axioms damages the structure and deem the resulting object less interesting.
In the next section, we will go in the other direction and will add a “bonus” axiom to
a group.

2.8 Commutative groups

The groups (Z,+), (Z,-), ..., (C,-) all share one extra property that we did not insist
on in the definition of a group. Can you see what it is? Yep, it is that the order of
the operands does not change the result. 24+ 3 =3+2 and 2-3 = 3-2. We will care
both about groups with this property and about groups without this property.

Definition 2.5 (Commutative groups). A group (G,e) is commutative if Va,b €
G aeb=Vbea.
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Sometimes we use the term Abelian group for a commutative group named after the
tragic genius Niels Henrik Abel.

An important example of a non-commutative group is obtained by considering com-
position of functions. Here, the set G consists of, say, all one-to-one functions on some
domain D. The group law is then given by composition, namely, a ® b = a o b where,
as usual, aob is the function that is defined as follows: Vo € D (aob)(z) = a(b(x)).
Convince yourself that this is a group and show that if |[D| > 3, this group is non-
commutative.

2.9 Constructing some groups

Let’s try to play a little bit with groups of a given size to see what kind of structure
the axioms dictate. As usual, it is good to start at the beginning. Is there are group
of size 07 Well, nope. We insisted on having the neutral element and the empty set
contains no elements. It is easy to see that there is exactly one group of size 1.
What about groups of size 27 Say G = {e, a} where e, as usual, is the neutral element.
The axioms dictate how to multiply by e (ee = e, ea = ae = a). So, we only need
to explore the two options aa = e and aa = a. If we go with the second option, a
will not have an inverse as ae = aa = a. This contradicts the existence of an inverse
axiom. You can convince yourself that the first option is consistent with all group
axioms. So, there is exactly one group of size 2. In fact, as a computer scientists,
you know that group very well. Do you recognize it? It is addition modulo 2-the
way we are used to working with bits. This becomes more transparent if we choose
to represent the group as an additive group, writing 0 for e and 1 for a. We denote
this group by (Zs, +).

One should be careful about what does it mean for two groups to be different. It is
quite often the case that you’re looking at this neat group you found just to realize
it is a known group in disguise. That’s one of the nice aspects of group theory. Just
a moment ago, we figured out that our size 2 group is something we all know very
well and might incorrectly consider it as being different. In the next lecture we will
formalize what does it mean for two groups to be “the same”. But, for now, here is an
example of two different, by all accounts, groups of size 4 (as an exercise, work out
yourself all groups of size 3).

First, we have (Z4,+) - the group of addition modulo 4 over {0,1,2,3}. Convince
yourself this is indeed a group. Second, if we will “glue two independent” copies of
(Zsy,+) next to each other, I claim, we will be looking at a different group of size 4.
Let me formalize what I mean by gluing. First, we recall the following notation - if
A, B are two sets, we define A x B = {(a,b) | a € A, b € B} as the product set.
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Definition 2.6 (Direct product). Let (G, o), (H,®y) be two groups. We define the
group (G x H, e) as follows. For every (g,h), (¢', ') in G x H, define (g,h) e (¢, h') =

(goc g’ henh')

The definition assumes implicitly that the resulting structure is a group. Convince
yourself that this assertion indeed holds. One typically writes G x H for the direct
product between groups and omit the operation symbol. Note that its neutral element
is (eq, em) where e, ey are the neutral elements of G, H, respectively. Note also that
if G, H are finite, then |G x H| = |G||H]|.

With the direct product in hand, consider Zy x Zy which is a group of size 4. This
is actually one famous group named the Klein four-group. There are many ways to
convince yourself that this is not at all Z,. For example, every element in Zs X Zs is
its own inverse whereas in Zg4, 1 is not its own inverse (as 1 + 1 = 2 # 0). Turns out
that there are no more groups of size 2 but to say such a thing formally we’ll need
to wait for the next lecture. Still, for now, here is a table of the number of groups
of a given size up to 16. We also count commutative and non-commutative groups
separately to get some more insight.

Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Commutative 1 11 2 1 1 1 3 2 1 1 2 1 1 1 5
Non-commutative 0 0 0 0 0 1 0 2 0 1 0 3 0 1 0 9

By the above examples, you have probably figured out by now that for every integer
n > 1 there is a group of size n. It is the group of addition modulo n over the set
{0,1,...,n—1}. We denote this group by (Z,,+). For every n, this is a commutative
group. Observe further that according to the table, for every prime number p < 16,
(Z,,+) is the only group of size p. This is true in general and we will prove this soon.
Looking at size 15 one can see that this is not an if and only if condition

2.10 Some basic general properties

After seeing some groups we are ready to go abstract again and ask what kind of
general properties hold for an abstract, general, group. First, we observe that a
neutral element in every group is unique. Indeed, if e, ey are both neutral then
e; = e1eg = eo. This allows us to talk about the neutral element in a give group.

An inverse of a given element is also unique. In fact, more is true. Consider a group
G and a fixed element a € G. Define the map ¢, : G — G by ¢,(z) = ax. I claim
that ¢, is injective (that is, one to one). Indeed, if ¢,(x) = ¢.(y) then ax = ay.
Let’s take an inverse b of a. Then b(az) = b(ay) and so, by the associativity law,
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(ba)x = (ba)y. As b is an inverse of a, we get that ex = ey and so x = y. To see that
this implies the uniqueness of an inverse of a given element, consider some element a.
As ¢,(x) is injective, there is at most one element = for which ax = ¢,(x) = e and,
by the group axioms, we are guaranteed that such an element x exists. From now on
we can talk about the inverse of an element a. If we have a multiplicative group in
mind, we denote the inverse of a by a~!. For an additive group we write —a.

If we have a multiplicative group (G, ) in mind, a € G and n € N, you can prove that
1y

the inverse of " which is denoted by (a")™!, equals to (a=!)". So we can actually

extend the exponent to be an element of Z. Same is true for an additive group.

2.11 Subgroups

In Mathematics, when you have an object that you care about that has some structure,
you will typically be caring about parts of the object that also have such structure.
Wow, that was abstract. Perhaps the simplest example is the integers (Z,+) and
even numbers as their sub-object. The structure of (Z,+) is its group structure.
The even numbers can also be added and they have a neutral element sitting inside.
Associativity is obvious as it follows from the associativity of the integers. What we
just said is that the even numbers, with respect to the addition operation is a group,
which we’ll denote by (2Z,+). But we really want to say that it is a subgroup of
(Z,+). So, let’s define this notion in the most natural way.

It will be useful to go back to the functional definition. We also use the following
standard notation. Let A, B,C be three sets such that A C B. Let f: B — C. We
define the function fla: A — C by fia(a) = f(a) for all a € A and say that fi4 is the
restriction of f to A.

Definition 2.7 (Subgroup). Let (G, f) be a group. A subgroup (H, fiuxu) of (G, f)
is a group such that H C G.

Observe that as we require that (H, fiuxm) is a group, we implicitly require that the
image of figxp is contained in H.

A good example are vector spaces and their subspaces. For instance, take the group
(R?, +). Every line that intersects with the origin H = {(x,y)|y = m-x} is a subgroup
(H,+). By the definition of the group (R?, +), the subgroup holds all of the group’s
properties. We just need to show that Va,b € H, a+b € H. let (x1,y1), (z2,y2) € H.
S0 Y1 + y2 = m(x1 + x2) 80 (T1 + w9, y1 +1y2) € H.
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2.12 Cosets

We already saw that (2Z,+) is a subgroup of (Z,+). Obviously (2Z + 1,+) (i.e. the
odd numbers) is not a subgroup, as it does not contain the neutral number 0. But
still, it feels like it should be something like a subgroup, as the only action we did
was to "move" the evens set by one step. We will call this type of set a coset. Notice
that we can get the odds set by "moving" the evens set any odd number of steps, e.g.
(2Z + 3,+). Actually, we will see that there are many ways to form the same coset.
Let’s start with the definition:

Definition 2.8 (Coset). Let (G, f) be a group and (H, f) a subgroup (H < G).
Define aH, a left coset of H, to be the set {ah|Vh € H}. Similarly, Ha = {ha|Vh € H}
is said to be a right coset of H.

Example 2.9. Considered again the group (R?, +), a subset S = {(z,y)|ly =m -z +
n} C R? isn’t a subgroup of (R?, +) if n # 0, but it is a coset of H = {(z,y)|y = m-x},
as S = (0,n)+ H.

Some easy to prove claims:

1. G is commutative — VYa € G,VH <G aH = Ha
2. aH=0H < b lac H
3. aH #bH — aH(\bH =10

4. |aH| = |H|

Note that for a given subgroup H, Va,b € G the relation aRb <= b~'a € H defines
an equivalence relation in G; using (2), we can see that a and b are equivalent under
this relation if and only if they belong to the same left coset of H.

We can conclude that the left cosets are a decomposition of the group G into disjoint
sets of identical size: |G| = ||JaH| = |H|- #left cosets.

Definition 2.10 (index of H in G). Let G be a group and H < G a subgroup . Then
|G : H] the index of H in G is the number of distinct left cosets of H in G.

Theorem 2.11 (Lagrange). |G| = |H| - [G : H] i.e. the size of the group G can be
expressed as the size of a subgroup H times the number of cosets of H. In particular,
the size of the group G is divisible by the size of any subgroup of G.

Corollaries from Lagrange Theorem:

1. If G is a finite group, VH < G, |G| is divisible by |H|.

2. If GG is prime then G doesn’t have any non-trivial subgroups.
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2.13 Normal groups and quotient groups

Consider a group G and a partition of GG into equivalence classes under some equiva-
lence relation R. We might want to define a group structure on the set of equivalence
classes; that is, a group G’ where each element is a set [a] = {g € G|aRg} C G.
We want G’ to preserve the structure of G, so intuitively the new group operation
should be defined in the following way: Vlal,[b] elements in G’ [a] - [b] = [a - b].
The problem with this approach is that this operation is not always well-defined: if
la] = [d'], [b] = [V], it is not necessarily true that [ab] = [a'].

Remark. Assume that GG is a Group, and R is an equivalence relation such that it
indeed holds that Va,d’,b,0" € G if [a] = [d/] and [b] = [V], then [ab] = [a'V]. In this
case we could define a group G’, and:

1. [e] would be the neutral element in G’. proof: V[a] € G’ [e] - [a] = [e-a] = [a] =
[a-e] =[d] - [¢]

2. [e] = H is a subgroup of G:
Associativity : H C G therefore by the associativity of GG, H is also associa-

tive.

Neutral element : e € H = [e]. Since e is the neutral element of G, Vh €
HCG,e-h=h-e=h;

Inverse : Vh € H,3h™! € G by the inverse property of G. [h7!] = [h™ -] =
[h=1] - [e] =[] - [h] = [~ - h] = [e]. This implies that h~! € [¢];
Closure under the group operation : Va,b € H : [ab] = [a][b] = [e][e] =
le] = H. This implies a-b € H.
3. Exercise: prove that [a] = aH = Ha.

We just saw that if we had some partition of G into disjoint sets that happen to have
this nice property that Ya,a’,b,0 € G if [a] = [d/] and [b] = [V/] = [ab] = [a'V],
then [e] is a subgroup of G, the disjoint set of the partition are its left cosets, and
they are identical to its right cosets. We can now understand the motivation for the
following definitions:

Definition 2.12 (Normal Subgroup). A subgroup N of a group G is normal in G if
Vg € G: gN = Ng. We denote such a subgroup as N <G.

Remarks:
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1. In fact, the common definition for a normal subgroup is: a subgroup N of G is a
normal subgroup of G if Vg € G and Vn € N,gng™' € N. It’s easy to prove
that the two definitions are equivalent.

2. Note that if G is abelian, then any subgroup of G is a normal subgroup.

Definition 2.13 (Quotient Group). Let N be a normal subgroup of a group G.
Define the quotient group G/N = {aN : a € G}, i.e. the set of all cosets of N in G.
G/N operation is defined as VaN,bN € G/N : (aN) - (bN) = (a - b)N

Note that G/N is indeed a group:

1. The operation is well defined as the definition of the product of two cosets does not
depend on the representatives. If for some a,a’,b,0' € G : aN = o/ N,bN = VN
then using H normality in G it holds that (ab)N = a(bN) = a(0'N) = a(NV') =
(aN = (/N = d' (NV) =d (VN) = (a'V)N

2. The operation is associative: YaN,bN,cN € G/N, (aNbN)cN = (abN)cN =
((ab)e)N = (a(bc))N = aN(beN) = aN(bNeN)

3. N = eN is the neutral element of G/N since YaN € G/N, aN - eN = (ae)N =
aN = (ea)N = eN - aN

4. YaN € G/N, there is an inverse in G/N and (aN)™' = a7!N: a" !N -aN =
(a'a)N =eN =N
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LECTURE 3
GROUPS - THE BASICS

In the previous lecture we used the informal notion of a “number system” while having
N,Z,Q,R and C in mind. I also hinted that we’ll be interested in finite number
systems which clearly non of the above are. In this lecture we’ll start the beautiful
process of formalizing and abstracting the notion of a number system. An abstraction
that, in particular, will allow us to come up with finite number systems.

So what do we mean by a ‘number system™ Well, we definitely gonna want to
have a set of “numbers” to play with. In all of the above examples, “playing” meant
that we can add, subtract, multiply and, in some cases, even divide two numbers
to obtain a third number in the set. A “number” in N for example was a natural
number. We have gotten used to those but to rigourously define such numbers one
typically resorts to Peano axioms. For example, a set-theoretic model of the natural
numbers, proposed by John von Neumann, constructs the natural numbers using
only set operations on the empty set. You think you know good old 37! According
to this construction, 3 is defined by {0, {0}, {0,{0}}}, where 0 is the empty set. The
situation got more complicated as we moved forward. In particular, a rational number
is in fact an equivalence class with respect to a certain equivalence relationship over
pairs of “numbers” from Z.

When coming to abstract the notion of a number system, we don’t want to get into
the details of what the numbers are. In particular, we won’t get into questions like
what do they mean and are they “real” or not. We want to consider the numbers as
abstract symbols and focus on how we can playing with them.

To make life simpler, in this lecture we are going to focus on a single operation rather
than on four as we have in some of our number systems. This will make life simpler
for us but in fact there are many examples, some of which we will see, in which the
number system is naturally equipped with only one operation.

3.1 The definition of a Group

Defining our single-operation number system will be done using an axiomatic ap-
proach. Looking back at the number systems that we know, we’ll decide which prop-
erties we want to keep. Turns out we will set our heart on {0, {0}, {0, {0}}} such
properties.
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3.1.1 The associative law

Let us consider Z endowed with the addition operation, ignoring multiplication for
the moment. One feature that we really like about addition is that although it is
defined over pairs of numbers, we can extend the operation to more than two operands
without having to account for the order in which we apply the operation. That long
sentence can be summarized by saying that for all a,b,c € Z, (a+b)+c¢ = a+ (b+c).
This “law” is known as the associative law. It implies that the expression a 4+ b+ ¢ is
well-defined. So does a + b+ ¢+ d, etc. We're definitely going to keep this one! Note
that not all operations are associative. We don’t have to look far: (a — b) — ¢ is not
the same thing as a — (b — ¢).

3.1.2 Neutral element

OK. Now it is time to fix the poor treatment zero got from our ancestors and consider
it as central. 0 “does nothing” when added to another element. We are going to insist
our number systems will always have such a does-nothing element. Note that with
respect to multiplication, 1 is the does-nothing element. Soon we are going to call
such an element a neutral element rather than a does-nothing element.

3.1.3 Inverses

It is the negatives turn. Still with Z equipped with addition, every element a € Z
has an element that when added to a gives back 0-the neutral element. Of course,
we are talking about —a. When thinking of QQ equipped with multiplication the
corresponding element to a will be 1/a. But something about that example doesn’t
sit well-there is no “inverse” element like that which corresponds to 0. We will insist
on having such an inverse element for every element. What is typically done in
situations as in the above example is to shamefully take 0 out of the picture and
consider Q \ {0}. Sorry 0. Sometimes though it is useful and more “complete” to add
oo as the inverse of 0 (this is related to the projective geometry I was eluded to last
time).

Geometrically, in the Z with addition example, inverse means reflecting around 0 on
the real axis. Taking, the inverse in C \ {0} with respect to multiplication kind of
turns the unit ball {a € C\ {0} | |a] < 1} inside out (and in some sense, if insisting,
taking the omitted point 0 very far to oo).
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3.1.4 The formal definition

After the motivating discussion above, I think we’re ready to see the following defi-
nition.

Definition 3.1 (Group). A group is a set G together with a function f: Gx G — G
such that

Associativity. Va,b,c€ G f(f(a,b),c) = f(a, f(b,c));
Neutral element. e € G VYa € G f(a,e) = f(e,a) = a;
Inverse. Vae G 3be G f(a,b) =e.

The function f is called the group law. We typically do not use this functional notation
and simply write a e b for f(a,b). So, associativity looks like (¢ @b) e c=a e (bec).
When it causes no confusion, one omits the symbol altogether and simply write ab.
When we have an additive operation in mind we write a + b even though this is not
necessarily the addition we know from N and friends. In this case we sometime write
0 for e. We say that the group is additive. Similarly, when we have a multiplicative
operation in mind, we write a - b and 1 for e. In this case we say that the group is
multiplicative. In an additive group one abbreviates and write a + a as 2a, a +a + a
as 3a etc. Similarly, in a multiplicative group we write a? for a - a, etc. Note that
then it makes sense to define a® = e. It is important to keep in mind that these are
just notations. They mean nothing and are only meant so that us human beings will
convey our intensions (somewhat like comments in a code).

When referring to a group, we sometimes write (G, f), (G, ) or (G,+), (G,-). When
the operation is clear from context we sometimes write G for the group.

The innocent-looking Definition 3.1 is central to a fair fraction of mathematics. It is
hard to overestimate its importance. I will skip the historical development and nice
anecdotes this time but I urge you to look it up. I will be satisfied by saying that
the axioms were first written down formally by Walther von Dyck in 1882. However,
the study of group theory, even before the definition has emerged, dates at least a
century back.

3.1.5 But why this definition?

Chess is an interesting game. My eight year old son beats me more than half the
time and I am not sure it says much about his game skills. Still, only by playing
Chess I came to appreciate the rules-the axioms if you will-of the game. Prior to
this experience, it all seemed a bit ad hoc.
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You just saw Definition 3.1-the rules of the game. It is too much, to say the least,
to expect of you to appreciate the definition just by staring hard at it. For that you
will need to play with groups. We will only need the very basics of group theory
but even that, I hope, will give you some insights. I will briefly mention that there
are other notions related to groups. For example, it is worth noting that (N, +) is
not a group as none of the elements, but for 0, has an inverse. Such a structure is
called a monoid—a group without the existence of inverse axoim. A semigroup does
not even requires the neutral element—only associativity. We won’t touch upon these,
somewhat less central, notions. Somehow, the structure guaranteed by the properties
of a group is just enough to be extremely interesting. With hindsight, removing any
of the axioms damages the structure and deem the resulting object less interesting.
In the next section, we will go in the other direction and will add a “bonus” axiom to
a group.

3.2 Commutative groups

The groups (Z,+),(Z,-), ..., (C,-) all share one extra property that we did not insist
on in the definition of a group. Can you see what it is? Yep, it is that the order of
the operands does not change the result. 24+3=3+2 and 2-3 = 3-2. We will care
both about groups with this property and about groups without this property.

Definition 3.2 (Commutative groups). A group (G,e) is commutative if Va,b €
G aeb=Vbea.

Sometimes we use the term Abelian group for a commutative group named after the
tragic genius Niels Henrik Abel.

An important example of a non-commutative group is obtained by considering com-
position of functions. Here, the set GG consists of, say, all one-to-one functions on some
domain D. The group law is then given by composition, namely, a ® b = a o b where,
as usual, a o b is the function that is defined as follows: Vx € D (aob)(x) = a(b(z)).
Convince yourself that this is a group and show that if |[D| > 3, this group is non-
commutative.

3.3 Constructing some groups

Let’s try to play a little bit with groups of a given size to see what kind of structure
the axioms dictate. As usual, it is good to start at the beginning. Is there are group
of size 07 Well, nope. We insisted on having the neutral element and the empty set
contains no elements. It is easy to see that there is exactly one group of size 1.
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What about groups of size 27 Say G = {e, a} where e, as usual, is the neutral element.
The axioms dictate how to multiply by e (ee = e, ea = ae = a). So, we only need
to explore the two options aa = e and aa = a. If we go with the second option, a
will not have an inverse as ae = aa = a. This contradicts the existence of an inverse
axiom. You can convince yourself that the first option is consistent with all group
axioms. So, there is exactly one group of size 2. In fact, as a computer scientists,
you know that group very well. Do you recognize it? It is addition modulo 2-the
way we are used to working with bits. This becomes more transparent if we choose
to represent the group as an additive group, writing 0 for e and 1 for a. We denote
this group by (Zs, +).

One should be careful about what does it mean for two groups to be different. It is
quite often the case that you're looking at this neat group you found just to realize
it is a known group in disguise. That’s one of the nice aspects of group theory. Just
a moment ago, we figured out that our size 2 group is something we all know very
well and might incorrectly consider it as being different. In the next lecture we will
formalize what does it mean for two groups to be “the same”. But, for now, here is an
example of two different, by all accounts, groups of size 4 (as an exercise, work out
yourself all groups of size 3).

First, we have (Z4, +) - the group of addition modulo 4 over {0,1,2,3}. Convince
yourself this is indeed a group. Second, if we will “glue two independent” copies of
(Zs,+) next to each other, I claim, we will be looking at a different group of size 4.
Let me formalize what I mean by gluing. First, we recall the following notation - if
A, B are two sets, we define A x B = {(a,b) | a € A, b € B} as the product set.

Definition 3.3 (Direct product). Let (G, o), (H,ey) be two groups. We define the
group (G x H,e) as follows. For every (g,h), (¢',h') in G x H, define (g,h)e (¢, 1) =
(g LJ€l g,a h o h/)

The definition about implicitly assume that the resulting structure is a group. Con-
vince yourself that this assertion indeed holds. One typically writes G x H for the
direct product between groups and omit the operation symbol. Note that its neutral
element is (eq, ey ) where e, ey are the neutral elements of G, H, respectively. Note
also that if G, H are finite, then |G x H| = |G||H].

With the direct product in hand, consider Z, X Zs which is a group of size 4. This
is actually one famous group named the Klein four-group. There are many ways to
convince yourself that this is not at all Z4. For example, every element in Zs X Zs is
its own inverse whereas in Zj4, 1 is not its own inverse (as 1 + 1 = 2 # 0). Turns out
that there are no more groups of size 2 but to say such a thing formally we’ll need
to wait for the next lecture. Still, for now, here is a table of the number of groups
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of a given size up to 16. We also count commutative and non-commutative groups
separately to get some more insight.

Size 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16
Commutative 111211132 1 1 2 1 1 1 5
Non-commutative 0 0 0 0 0 1 0 2 0 1 0 3 O 1 0 9

By the above examples, you have probability figured out by now that for every integer
n > 1 there is a group of size n. It is the group of addition modulo n over the set
{0,1,...,n—1}. We denote this group by (Z,, +). For every n, this is a commutative
group. Observe further that according to the table, for every prime number p < 16,
(Z,, +) is the only group of size p. This is true in general and we will prove this soon.
Looking at size 15 one can see that this is not an if and if condition

3.4 Some basic general properties

After seeing some groups we are ready to go abstract again and ask what kind of
general properties hold for an abstract, general, group. First, we observe that a
neutral element in every group is unique. Indeed, if e;,es are both neutral then
e; = ejeg = eo. This allows us to say talk about the neutral element in a give group.
An inverse of a given element is also unique. In fact, more is true. Consider a group
G and a fixed element a € G. Define the map ¢, : G — G by ¢.(x) = azx. 1 claim
that ¢, is injective (that is, one to one). Indeed, if ¢,(x) = ¢.(y) then az = ay.
Let’s take an inverse b of a. Then b(azx) = b(ay) and so, by the associativity law,
(ba)xr = (ba)y. As b is an inverse of a, we get that ex = ey and so x = y. To see that
this implies the uniqueness of an inverse of a given element, consider some element a.
As ¢,(x) is injective, there is at most one element x for which az = ¢,(r) = e and,
by the group axioms, we are guaranteed that such an element x exists. From now on
we can talk about the inverse of an element a. If we have a multiplicative group in
mind, we denote the inverse of a by a~!. For an additive group we write —a.

If we have a multiplicative group (G, -) in mind, @ € G and n € N, you can prove that
-1 1y

, equals to (a=!)". So we can actually

extend the exponent to be an element of Z. Same is true for an additive group.

the inverse of @™ which is denoted by (a")

3.5 Subgroups

In Mathematics, when you have an object that you care about that has some structure,
you will typically be caring about parts of the object that also have such structure.
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Wow, that was abstract. Perhaps the simplest example is the integers (Z,+) and
even numbers as their sub object. The structure of (Z,+) is its group structure.
The even numbers can also be added and they have a neutral element sitting inside.
Associativity is obvious as it follows from the associativity of the integers. What we
just said is that the even numbers, with respect to the addition operation is a group,
which we’ll denote by (27Z,+). But we really want to say that it is a subgroup of
(Z,+). So, let’s define this notion in the most natural way.

It will be useful to go back to the functional definition. We also use the following
standard notation. Let A, B, C' be three sets such that A C B. Let f: B — C. We
define the function fla: A — C by fia(a) = f(a) for all a € A and say that fi4 is the
restriction of f to A.

Definition 3.4 (Subgroup). Let (G, f) be a group. A subgroup (H, fiuxu) of (G, f)
is a group such that H C G.

Observe that as we require that (H, figxp) is a group, we implicitly require that the
image of fgxp is contained in H.

3.6 Cyclic groups and generated subgroups

We want to study the properties of non-trivial groups with the simplest structure i.e
we will look at groups that are generated from one element.

Definition 3.5 (Cyclic group). A group G is cyclic if there exist an element g € G
that generates the whole group, i.e. G = {¢* | i € Z}, denoted (g) or (g).

Remark. Let g € G be an element in a group G then the cyclic subgroup (g) is the
minimal subgroup of G that contains g.

Remark. Any cyclic group is abelian.

Examples:
1. The trivial group with one element is cyclic and equals to (e).
2. (Z,+) is a cyclic group of infinite size and is generated by (1).

3. Zn ={0,1,...,n— 1} with addition operation modulo n is cyclic and equals to
(1).
4. The subgroup 27 contains all even numbers is cyclic and equals to (2) .

Naturally, one could ask to extend the definition of a subgroup that is generated by
one element to a subgroup that is generated from a subset S of elements in G.
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Definition 3.6 (Subgroup). Let S C G be a subset of elements in group G. The
subgroup generated by S is the minimal subgroup of G that contains all the
elements in S, denoted by (S5).

It follows from the definition that (S) is formed by the intersection of all subgroups
H < @ that contains S:
)= () H
SCH<G
Example:
Let S = {g,h} C G then the subgroup generated by S is the following:

(g,h) = {g"h"™...g""h™ | i1,... i, € Z,n € N}

that is, (g, h) contains all the words that can be formed from g, h and their inverses
-1 p—1
g, hT.

Definition 3.7 (Element order). Let G be a group and g € G be some element. The
order of g defined to be the minimal integer 0 < n for which ¢" = e, denoted o(g).
In case n does not exists, the order of the group is infinite.

Claim 8. Let G be a group and g € G be some element. The size of the cyclic group
(g9) equals to the order of g, i.e |{g)| = o(g).

Proof. Suppose the order of g is finite, o(g) = n. On the one hand, {e,g,...,¢" '}
contains at least n different elements: suppose to the contrary there exist 0 <1 < j <
n — 1 such that ¢* = ¢/, then by multiplying by ¢~% on both sides we get ¢?~¢ = e but
Jj —i < n in contradiction to n being the order of g. We conclude that o(g) < [(g)].

On the other hand, we claim that (g) = {e,g,...,¢" '} is a group: every element g

n—i i n—1

has an inverse ¢" " since g = g" = e. So this set forms a group of size n and
contains g so by the definition of the cyclic group we get that n = o(g) > [(g)|-

All in all, o(g) = [(9)]- O

We now want to return to the notion of cosets we saw in the last lecture, and to prove
some of their properties. Let G be a group and H < G a subgroup, fix ¢ € G and we
call the following a left and right coset of H in correspondence:

gH ={gh|h e H}

Hg={hg|he H}

Recall the motivation for these definitions comes from the integers Z where we know
that 27Z is a subgroup that contains all the even numbers but the odd numbers 1+ 27Z
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doesn’t form a subgroup although their structures are not that far apart, thus we
wish to capture these phenomena with our algebraic structures.

Claim 9. Let H C G. The left cosets of the form gH for any g € G, decompose G
into disjoint sets of identical size. That is, V1,92 € G:

1. Either g1H = goH or g1H N go H = ¢.

2. The exist a bijection f: g1H — g H.
Remark. The exactly analogous claim holds for right cosets as well.
Proof.

1. We show that if g;H N goH # () then g1 H = g H. Following the assumption,
there exist hi, ho € H not necessarily different such that gih; = gohs. Now, let
g1h € g1 H be some element.

gih = gieh = gihihi'h = (gih1)(hi'h) = (g2h2)(hy'h) = gao(hahi'h) € g2 H

We conclude that gt H C g2 H, and by symmetrical arguments we would achieve
goH C g1H, so overall g1 H = go.H.

2. Define f as z + gog; 'z.
To see its 1:1, take some x1, 29 € g1 H s.t gggflaﬁl = gggflxg, and hence
(9195 )g291 01 = (9195 ') gogy ‘w2 = w1 =12

The mapping is also onto: for any g.h € goH we could take x = g1h € g1 H so
f(x) = g297 ' g1h = goh as desired.

From the claim above we can conclude Lagrange Theorem.

Theorem 3.10 (Lagrange Theorem). Let G' be a finite group and H < G, then |H|
divides |G)|.

Proof. From claim 9 we conclude that G is divided into a collection of disjoint cosets
of equal size, the size of each coset is |H|, so consequentially |H| divides |G]. O

Corollary 3.11. Let G be a finite group such that |G| is a prime number, then G is
cyclic.
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Proof. Take e # g € G, and look at the cyclic subgroup (g) < G. Due to Lagrange
theorem (3.10), [{g)| | |G| = p. Since p is a prime and (g) isn’t trivial then [{g)| = p.
It follows immediately that (g) = G, from size comparison. [

Claim 12. Let G be a finite group, and g € G. Then ¢/¢ = e.

Proof. Due to theorem 3.10 and claim 8, we know that o(g) = [(¢)], [{g)| | |G|. Thus
|G| = m - o(g) for some m € N, and

g6l = golarm — (golaym — gm _

3.7 Multiplicative Group

Definition 3.13 (Multiplicative group). For any n € N, we define (U,,,- mod n),
denoted sometimes as (Z/nZ)*, as the group of all integers that coprime to n, i.e

U, ={1<k<n|gedk,n)=1}
Examples: Recall that a group is cyclic if it’s generated by some element.
o Us=1{1,2,3,4},22=4,22=32"=1 = cyclic
o U; =1{1,2,3,4,5,6},32=2,33=6,3"=4,3°=5,3 =1 = cyclic
o Us={1,3,5,7},3*=1,52=1,72=1 = not cyclic
Claim 14. For everyn € N, (U,,- mod n) is indeed a group.

Proof. We’ll prove each property:

e Identity element: 1 € U, is the identity for integer multiplication, and always
in U, as gcd(1,n) = 1.

e Closure: Any k, k' € U, implies gcd(k,n) = 1 and ged(k’,n) = 1, and thus also
gcd(kk';n) = 1, which in turn implies the closure property k - k' € U,.

e Associativity: the operation is indeed associative: ab = ba mod n.

e Inverse: VEk define f, : U, — U, by x — k- x. It’s injective, as for any two
inputs that holds fi(x) = fx(y) we got
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k-z=k-y modn=—=k(r—y)=0 modn=—n|k(zx—y)

recall that ged(n, k) =1, and it follows immediately:

nl(x—y) = r—y=0 modn=2z=y modn

Therefore fj is a bijection (1:1 for finite U,) and in particular is surjective.
Hence, 3k s.t. f(K') = k- k" =1 mod n. If we insist on finding the inverse
explicitly, we can use the following theorem.

Theorem 3.15 (Bezout identity). Let a,b € N with ged(a,b) = d. Then, there
exists integers x and y such that ax 4+ by = d.

So, in our case we get z and y such that kz + ny = 1 (in particular z and n
must be coprime) and this means that kz =1 mod n, i.e. z is the inverse of k
in U, and we can find it using extended Euclid’s algorithm.

]

Theorem 3.16 (Euler). Let a,n € N such that gcd(a,n) = 1. The Euler function
o(n) counts the number of positive integer that are smaller and coprime to n,

p(n) =1 <k <n—1]|ged(k,n) =1}

Then, the following holds:
a?™ =1 modn

Proof. Consider the multiplicative group U, and observe that a is an element in it.
Following claim 12, it follows immediately that /"l =1 = a*(™ = 1. [

Corollary 3.17 (Fermat’s Little Theorem). Let p be a prime and a € N, then
a’? =a mod p
Proof. Note that ¢(p) = p — 1 for any prime number, and thus following 3.16,

> '=1 modp = a*=a modp
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3.8 Normal subgroups

Definition 3.18 (Normal subgroups). Let G, H be two groups such that H < G.
We say that H is a normal subgroup of G, denoted H < G, if Vg € G,gH = Hg. In
other words, any member of GG induce equal right and left cosets with H.

Definition 3.19 (Quotient group). Let H <G. The quotient group is defined by
G/H :={gH | g € G}

and for any two elements gH, g'H € G/H, the operation defined by
gH-¢H = (g9-¢)H

For this to be well defined (independent of representative choice), we need:

Vg, €G VhW € H : ghH-gdWH=gH -¢dH
By definition gH - ¢ H = g¢g'H and ghH - ¢h'H = ghg'h’' H so equivalently we need:
ghg'W'H = gg'H
For normal subgroups, ¢ H = Hg' therefore 3h"” € H s.t. hg’ = g’h”, hence:

h / hl — /hl/h/ /H
g ng 99 . , €99
g'h’ €H
Thus for normal subgroups the equality holds and the group is defined. This is called
the quotient group.

As an example, observe the quotient group Z/5Z. Following definition, Z/5Z =
{a+5Z : a € Z}. However, it easy to see that a,b € Z such that a = b mod 5 induce
the same group, so there are essentially only 5 groups in the quotient group:

7.)57 = {57,1 + 52,2 + 52,3 + 52,4 + 57}
Theorem 3.20 (Cauchy). Let G be any finite abelian group, and p € N be some

prime factor of |G|. Then there exists some g € G such that o(g) = p.

Proof. By induction on n = |G|. As n > p due to definition, the base case is n = p.
Such a group is cyclic, so its generator has order p (in fact in this case any non-trivial
element of G has order p). Thus, we assume that for any group with size smaller then
n the theorem holds, and prove it for n.

3-12



Take some x € G, and denote by X = (x) the cyclic group generated by x. If p | | X],
then since z1XI = e (by definition), it follows immediately that x!*/? has order p.
Now, we deal with the case p 1 |X|. G is abelian, so X is normal. Recall that
|G| =|G/X|-|X|, so we must have p | |G/X]|. Consider the quotient group G/X: it
is abelian, and since |G/X| < n the induction hypothesis apply on it. That is, there
exist g € G such that gX has order p at the quotient group. Observe that for o(g),
the order of g at G,
(gX)O(g) _ go(g)X —eX =X

We must have p | o(g), otherwise we can write o(g) = ¢p + r with ¢,r € Z and
1 <r < p, which means that

X = (gX)9 = (gX)™* = (gX)"(gX)" = ((9X)")"(9X)" = X(9X)" = (9X)"

which is a contradiction to p being the order of ¢X in G/X. Finally, ¢°9/? has order
p, concluding the proof. O

3.9 Homomorphisms

Definition 3.21 (Homomorphism). Let G and H be two groups, and denote their
operations as -, -y respectively. A map ¢ : G — H, is called homomorphism, if it
preserves the structure of the groups, under their operations:

Va,b € G :pla-gb) = p(a) upb)

An injective homomorphism, is called monomorphism.
A surjective homomorphism, is called epimorphism.
A bijective homomorphism, is called isomorphism.

For example,
1. ¢ :Z — Zs defined by p(z) =2 mod 5.
2. Y : (R, +) — (R\ {0}, ) defined by ¥(z) = €.

Let G and H be two groups and ¢ : G — H be an homomorphism. Observe the
following properties:
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3. 0(G) ={wlg9) : g€ G} < H.

Definition 3.22 (Group Isomorphism). Let G and H be two groups. If there exists
an isomorphism ¢ : G — H, then we say that G is isomorphic to H, denoted G = H.

Observe that = is an equivalence relation over the groups, this means that

1. Reflexive. If GG is a group, then G = G: simply take ¢ to be the identity
p(a) = a.

2. Symmetric. If G and H are groups such that G = H, then H = (" since ¢ is
bijective, ™! is the inverse isomorphism.

3. Transitive. If G, H and K are groups such that G =2 H and H = K, then
G = K: simple composition of isomorphisms.

For example, consider the multiplicative group Us = {1,2,3,4}. Observe that 2% =
4,23 = 3. This means that 2 is a generator of Us, i.e. Us = (2) is a cyclic group.
Now, consider the additive group Z, = {0,1,2, 3}, then Us = Z4 using the mapping
¢ : Uy — Z4 defined by

p(1) =0,0(2) = 1,(3) = 3,0(4) =2

Alternatively, we can take the multiplicative group Us = {1,3,5,7}. This group is
not cyclic since the order of each non-trivial element is 2. It is possible to show that
this group is isomorphic to the product group Zs x Z,. We can look at the elements
of Ug in a binary representation using only 3 bits:

1=001, 3=011, 5=101, 7= 111

Observe that all the numbers have 1 as their least significant bit (they are all odd),
so we can map each number to the first two bits

90(1) = (070>7 90(3) = (Oa 1)7 @(5) = (170)’ 90(7) = (17 1)

The mapping ¢ : Us — Zy X Zs is clearly bijective, you can manually check that ¢ is
an homomorphism.

Another interesting example arises when looking at a group GG with a normal subgroup
N < G. We get an epimorphism ¢ : G — G/H by simply defining

VgeG:p(g) =gN

3-14



Definition 3.23 (Kernel). Let G and H be two groups, and ¢ : G — H be an
homomorphism. The kernel of ¢ is defined to be all the elements of G which goes to

| Ker(p) = o ({en}) = {g € G+ plg) = en}

Lemma 3.24. Let G and H be two groups, and ¢ : G — H be an homomorphism,
then
¢ is a monomorphism <= Ker(p) = {e}

Proof. Suppose that Ker(¢) = {e}. Let a,b € G such that ¢(a) = ¢(b). Then

plab™) = p(a) - o(b™") = pla) - (b)) = p(a) - p(a) =

this means that ab™! € Ker(p), i.e. ab™! = e and finally a = b. This means that ¢ is
injective and thus a monomorphism. The other direction is trivial. m
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LECTURE 4
QUOTIENT GROUP

4.1 Group Theory - Continued

4.1.1 From previous lecture
Claim 1. Let H < G. H<G <= d¢ homomorphism such that Kerp = H

Proof.
=
We proved every kernel is normal, thus if H = Kerp then H = Kerp < G.

=
Consider the natural homomorphism ¢ : G — G/H defined by ¢(g) = gH. Then:

ge Kerp < ¢(9)=H <— gH=H <= g€ H (1)

Hence Keryp = H, as required. O

4.1.2 First Isomorphism Theorem

Theorem 4.2 (First Isomorphism Theorem). Let ¢ : G — Ime be a homomorphism.
Then G/Kerg ~ Imyp

Example:

Consider ¢ : Z — Zs defined by ¢(x) = x mod 5. Then Kery ~= 5Z. Therefore
757 ~ Zs

Proof. We will find an ismorphism from G/Kerp to Imep.

Denote K = Kerp and define ¢(gK) = ¢(g). We will prove this function is well
defined and that it is an isomorphism.

Let g1, go such that g1 K = g2 K. Then gy = g1k for some k € K. Hence ¢ (g K) =
V(1K) = o(g1k) = o(g1)e(k) = ¢(g91) = ¥(g1K), where the one-before-last equal-
ity follows from that k € K.

¢ is a homomorphism: ¢(gK-hK) = ¢(ghK) = ¢(gh) = ¢(g)-¢(h) = Y(9K)-¢(hK).
We used the fact that ¢ is a homomorphism itself.
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¢ is onto: Let z € Imyp. Then there is a g such that ¢(g) = x. Therefore ¢¥(gK) =
©(g) = x as required.

¥ is one-to-one: We will prove the kernel of v is trivial. gK € Kery <= ¢(gK) =
e <= p(g)=e <= g€ Kerp=K <— gK =K.

We proved ) is a group isomorphism as required. O

Theorem 4.3 (Cyclic Group Classification). Let G' be a cyclic group. Then G is
1somorphic to either Z. or Z,,

Proof. As G is cyclic, every element in G can be expressed as a power of some g.
We define ¢ : Z — (g) as follow: n — ¢". ¢ is a homomorphism as p(n + m) =
gt =g" - g" = p(n) - e(m).

@ is onto by the definition of the cyclic group. Therefore, by the first isomorphism
theorem we deduce that Z/Kery ~ G.

Note that H = Kerp is a subgroup of Z. If H = {0}, then G ~ Z/{0} ~ Z as
required.

Otherwise, let n be the smallest positive number in H and let m be some integer in
H. We can divide m by n with a remainder: m = ng + r for some 0 < r < n. Thus
r=m—nq € H but »r < n, then r = 0 due to the minimality of n. Then m is a
multiple of n, and H = nZ.

We conclude that in this case G = Z/nZ ~ Z, O

Theorem 4.4 (The Correspondence Theorem). Let N <« G. There is a onto and

one-to-one correspondence between subgroups of G/N to subgroups of G containing
N.

Example:

Theorem 4.5 (Abelian Groups Classification). Let G be a finite abelian group. Then
there exist gy, ..., gn such that G ~ (g1) X ... X {gn) (No Proof)

4.2 Ring Theory

Definition 4.6 (Ring). We say that (R, +, ) is a ring if:
1. (R,+) is an abelian group, and 0 is its neutral element
2.a,beR=a-beR
3. Ya,b,ce R: (a-b)-c=a-(b-c)

4. dJ1e RVa e R: 1-a=c-1
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5. Va,b,ce R: a-(b+c¢)=a-b+a-c
6. Ya,b,c,e R: (a+b)-c=a-c+b-c
7041

Definition 4.7 (Commutative Ring). Let (R, +,) be a ring. We say that (R, +,-)
is a commutative ring if Va,b € Ra-b=10b-a.

Remark. From now on we will talk about commutatice rings (CR).

Ezample 4.8. (Z,+,-) is a CR. note that 2-3 = 0.

Definition 4.9 (Zero Divisor). We say that » € R\ {0} is a zero divisor if there
exists s € R\ {0} such that r-s =0

Definition 4.10 (Integral Domain). Let R be a CR. We say that R is an integral
domain if Vr € R, r is not a zero divisor.

Definition 4.11 (Field). Let R be a CR. We say that R is a field, if Vrr € R Js €
R:r-s=1

Ezxample 4.12.
Corollary 4.13. Let F' be a field. Then, F' is an integral domain.

Proof. Let x,y € F such that 2y = 0. If x # 0 there exist x7! € R such that
7'z = 1. Hence, y = 2 'zy = 2710 = 0. Otherwise, z = 0. Therefore, there aren’t

any zero divisors in F' which implies that it is an integral domain. O]

4-3



Fields: C,R,Q, Zs

Integral Domain: Z

Ring: Zg
Figure 5: Hierarchy of fields, integral domains, and rings.

Properties of Commutative Rings

(—a)(—b) = ab
(—)a=—a
(a+0)* = a®+ 2ab + b

Proof.

1.

Note that 0-a = (0+0)-a =0-a+ 0-a using distribution. Therefore 0-a = 0,
and by commutativity, a - 0 = 0 as well.

. To prove that a - (—b) = —ab, we need to prove that a - (—b) + ab = 0. By

distribution, a - (=b) + ab = a(—b+ b) = a- 0 = 0 by property 1.

(—a)(—=b) = —(—a)b = —(—ab) by repeated application of property 2. As the
negative of a negative is the original number by definition, —(—ab) = ab as
required.

. By property 2, (—=1)-a=—(1-a) = —a.

. Expending the expression we get (a + 0)? = a® + ab + ba + b*, and as the ring

is commutative, this is equal to a® + 2ab + b?

]

Remark. Z, is a field for prime p
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Proof. We've shown that Z, is a commutative ring. It remains to show that each
element # 0 as a multiplicative inverse.

Indeed, by Fermat’s little theorem, for each 0 # z € Z, it holds that z#~* = 1 mod p.
Therefore 2P~2 is the multiplicative inverse of z. ]

Definition 4.14 (Alternative definition of Field). A tuple (R, +, ") is a field if:
1. (R,+) is a an abelian group (with 0 as the identity element)
2. (R\ {0},-) is a an abelian group (with 1 as the identity element)
3. (a+b)c=ac+bc

Definition 4.15 (Sub-Ring). A subset S of a ring (R, +, ) is a subring if it is a ring
under (+,-)

Definition 4.16 (Ring Homomorphism). Let R, R’ be rings. A function ¢ : R — R’
is a ring homomorphism if:

1. Vr,s € R, p(r+s) = o(r) + ¢(s)
2. Vr,s € R, po(r-s) =@(r) - (s)
3. (1) =1
Claim 17. Let ¢ : R — R’ be a ring homomorphism.
1. @ is one-to-one <= Kerp = {0}
2. Vk € Kerp,¥r € R,p(k-1)=0
Proof.

1. Assume ¢ is one-to-one, and let r € Kery. By definition, ¢(r) = 0, but ¢(0) =0
as  is an homomorphism. Since ¢ is one-to-one, r = 0.

Now assume Kerp = {0} and let z,y € R such that ¢(z) = ¢(y). Therefore
olr —y) = ¢(x) — ¢(y) = 0 since ¢ is an homomorphism. We deduce that
x —y € Kergp, thus x —y = 0 or x = y as required.

2. ¢p(k-7) = p(k)p(r) =0-¢(r) =0
O

Definition 4.18 (Ring Isomorphism). Let R, R’ be rings. We say the rings are
isomorphic and denote R ~ R’ if there is an isomorphism ¢ : R — R’
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Definition 4.19 (Ideal). I C R for some ring R is an ideal if
1. I is an additive subgroup
2.Viel,re R—irel
Two trivial ideals always exist: R, {0}. Another example is that for R = (Z, +, -).

Definition 4.20 (Principal Ideal). An ideal (r) of R will be called a Principal Ideal
if it is generated by a single element r through multiplication by every element of R.

(ry={rs|s€ R} =rR

For a set S C R we mark

(S) = {Z sir; | i € R}

and for s,t € R we mark
(s,t) = sR+tR

Definition 4.21 (Principal Ideal Domain (PID)). An integral domain where every
ideal is principal will be called a Principal Ideal Domain.

Definition 4.22 (Quotient Ring). Let (R, +,-) be a ring and / C R and ideal. We
set
R/I ={r+1|r € R}

and we define the - operation by the representatives’ operation:
(T1+I)‘ (7"2"—[) =ry-ro+1
(because we want the "quotient group" to also represent the multiplication)

Theorem 4.23 (The First Isomorphism). Given an epimorphism ¢ : R — Im(p),
Im(p) ~ R/Ker(p)

For a given ideal I The Correspondence Theorem for rings will provide a two way
correspondence between ideals of R that contain I and ideals of R/I.

4.3.1 Gaussian Integers

Z[i) = {a+bi|abcZ},i*=—1

4-6



We feel quite comfortable saying that Z[i] is an integral domain. Note that 5 is not
prime:
5=(2+1)(2—1)

Definition 4.24 (Maximal Ideal). Let R be a commutative ring. An ideal I # R is
mairmal if the ideals containing I are I and R.

For example, 6Z C 3% C Z. So 2Z and 37 are maximal ideals while 6Z is not. More
generally, for p|n, nZ C pZ C Z.

Remark. The maximal ideals of Z are {pZ | p is prime}. pZ is clearly maximal because
a pZ C nZ will give n | p in contrast. W.L.O.G. a maximal ideal in Z is of the form
nZ (prime ideal) because otherwise we could split into mZ, kZ C nZ (note: this is
trivial from the fact that Z is a PID). If nZ is an ideal and n is not prime, then for
pln, nZ C pZ, but that means its not maximal, so n must be prime.

Remark. We can say the abstraction of prime numbers for rings are mazimal ideals.

4.3.2 The orthogonality of addition and multiplication

Let R be a commutative ring and A C R. We define

A+A={a+b|abe A}
A-A={a-b|abe A}
For example, for A ={0,1,2,..,n — 1},

A+A=1{0,.,2n—2}
And for B = {2° 21 22 . 2n~1}
B-B=/{202" . 2>?}

We notice that |A] < |A+ Al and |A - A| < |AJ?. Is there some A such that |[A| = n,
and both |A+ A| and |A- A| and not "large"? Perhaps even max (|A + A, |A - 4]) <
|A| - log|A| 7 Apparently no. Actually:

VA, max (|A+ A|,|A- A]) > |A"*
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LECTURE 5
GROUP HOMOMORPHISM

In the previous lecture we've started learning ring theory. We’ve defined (commu-
tative) rings, integral domains, fields and idelas. We've also seen that the notion of
ideal in rings is similar to that of normal subgroups in group theory. At the end of the
lecture, we’ve seen the first homomorphism theorem for rings and the correspondence
theorem for rings.

In this lecture we will continue to investigate ring theory.

5.1 Fields and PID

In the following section we will show that every field is a PID. In fact, we will show
even a stronger result, that every field has only the trivial ideals, that is, the ideals
(0) = {0} and (1) = R.

Claim 1. A commutative ring R is a field if and only if its only ideals are (0) and
(1).

Proof. Assume that R is a field and let I C R be an ideal. If I = {0} we're done.
Otherwise there exists € I such that # # 0. Let 27! € F be the inverse of 2. Then,
since [ is an ideal, x - 27! =1 € I. It follows that I = (1), as required.

Assume that R is a commutative ring whose only ideals are (0) and (1). Let z € R be
such that = # 0, and look at (x). Then necessarily (z) = R,so 1 € (z) and 1 =z -y
for some y € R. It follows that every 0 # x € R has an inverse so R is a field. m

Corollary 5.2. Every field is a PID.

5.2 Primes and Irreducibles

Motivation. How would you define a prime number in Z?

e 1st attempt: p is a prime if and only if, for any a,b € Z, when p = ab then
either a or b are +1.

e 2nd attempt: p is a prime if and only if, for any a,b € Z, if p|ab then either
pla or p|b.
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It turns out that in Z both definitions are equal, but we shall see that in other number
system this does not necessarily true. Indeed the first attempt defines irreducible
numbers while the second defines primes, and we will see that in integral domains
being a prime implies irreducibility.

Definition 5.3. Let R be an integral domain. For any r, s € R, we say that r|s (r
divides s) if and only if there exists ¢ € R such that s = rt.
Remark. Note that r|s if and only if (s) C (r).

Definition 5.4. Let R be an integral domain. An element r» € R is a unit if there
exists s € R such that rs = 1.

Remark. Note that r is a unit if and only if 7|1. This happens if and only if (r) = (1).
Example. In a field, all non-zero elements are units (since they have an inverse).

This is a sufficient condition for a commutative R ring to be a field, that is, if every
element is unit then any element has an inverse, so R is a field.

Another example. For an integral domain R define U(R) = {units in R}. Then
U(R) is a group under multiplication, since the multiplication of two units is a unit.

Definition 5.5. Let R be an integral domain. A non-zero and non-unit element
m € R is called irreducible if m = ab implies that a or b is a unit.

Definition 5.6. Let R be an integral domain. A non-zero and non-unit element
p € R is called prime if for any a,b € R, p|ab implies that p|a or pl|b.

Lemma 5.7. Let R be an integral domain, then every prime is irreducible.

Proof. Let p € R is a prime and assume that p = ab, so p|ab. Since p is prime we
can assume wlog that pla. Thus, there exists ¢ such that a = pe, thus p = pcb, so
p(1 — ¢b) = 0 and since R is integral domain then p = 0 or 1 —c¢b = 0, so ¢b = 1.
Since p # 0 it follows that b is a unit. O

5.3 Constructing ideals from existing ones

Let R be a commutative ring and I, J are ideals of R, the following compositions of
1, J are also ideals:

o INJ

o2



I+J

N
N/

InJ

1J

Figure 6: Relations between composition of ideals

[ ) [J:{Z?letjt’ nGN, il,...,inel, jl,,anJ}
o [+ J={i+jliel,je J} (smallest ideal that contains I, .J)

Figure 6 present graphically the relations between composition of ideals.

Example. Let R = Z, I = nZ and J = m#Z. In this case we have [ + J =
(ged(n,m)), INJ = (lem(n,m)) and I.J = (nm).
For example, if [ = 6Z and J = 4Z then [ + J = (2), INJ = (12) and IJ = (24).

Sometimes we would like to look at an ideal that is generated by two elements of a
commutative ring R. In this case, for a,b € R we have

(a,b) £ aR+ bR = (a) + (b).

This is the smallest ideal with respect to inclusion that contains both a and b.
Furthermore, for two elements a,b € R we have (a)(b) = (ab).

Proof Sketch. Note that any element in (a)(b) is a sum of elements the form ar - bs
for r,s € R. Each of these elements is in (ab) R, since ar -bs = (ab)rs. Hence the sum
of those elements is a sum of elements in (ab) and every such sum is in (ab) since any
ideal is closed under addition. The other direction is similar. O

Example. Recall that Z[z] is a commutative ring that includes all polynomial with
integer coefficients. Let I C Z[z] be the following ideal

I = {polynomials with an even constant term}.
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One can show that [ is generated by the polynomials = and 2, that is I = (x,2) =
rZ[z] + 27Z[x].

Recall that for two ideals J and K, we defined JK as all finite sums of terms of the
form jk for j € J and k € K. The ideal I that we've just defined is a good example
of why the finite sums are needed. Look at /2, and note that 2> € I? and 4 € I?.
Since I? should also be an ideal, we would like to have z? + 4 € I?. Note that there
are no two polynomials p, ¢ € I such that p(x) - ¢(z) = 22 + 4, so without taking the
finite sums, this element wouldn’t be in I? and we wouldn’t get an ideal.

Fact 5.8. Let R be a commutative ring and let I, J and K be ideals.
1. (J+K)=1J+IK.

2. I+J=Rimplies INJ =1J.

5.4 Maximal Ideals and Prime Ideals

In the following we present the notions of maximal ideals and prime ideals.

Definition 5.9. Let R be a commutative ring. An ideal M # R is maximal if for
any ideal N such that M C N C R then either N = M or N = R.

Definition 5.10. Let R be a commutative ring. An ideal P # R is prime if for any
a,b€ R, ab € P impliesa € Por b € P.

The following claim shows the connection between prime element of a ring and prime
ideals.

Claim 11. Let R be a commutative ring. A non-zero element p € R is prime if and
only if (p) is prime.

Proof. Assume that p is prime. Assume that ab € (p). Recall that ab € (p) if and
only if p|ab. Since p is prime, it holds that either pla or p|b. Now, p|a if and only if
a € (p) and p|b if and only if b € (p), so either a € (p) or b € (p).

Assume that (p) is prime. Assume that plab for some a,b € R. It follows that
ab € (p). Hence a € (p) or b € (p), then either p|a or pl|b. O

Theorem 5.12. Let R be a commutative and let M be an ideal. Then M is maximal
if and only if R/M 1is a field.
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Proof Sketch. Recall that R/M is a field if and only if R/M has only trivial ideals.
From the correspondence theorem, every ideal of R/M has one-to-one correspondence
to the ideals of R contatining M. Hence if M is maximal then R/M has only two
ideals, which are the trivials, and if R/M is a field then M is contained in exactly
two ideals- itself and R. O

Theorem 5.13. Let R be a commutative ring and let P C R be an ideal. Then P is
prime if and only if R/ P is integral domain.

The last two theorems implies the following.
Corollary 5.14. Let R be a commutative ring. Then every maximal ideal is prime.

Proof. Let P be a maximal ideal. Then R/P is a field, hence integral domain, so P
is a prime. ]

An interesting fact is that the other direction is also true in PIDs, as the following
claim implies and as we’ll see in HW.

Claim 15. Let R be an integral domain and let 0 # r € R. Then r is irreducible if
and only if (r) is maximal w.r.t. principal ideals.

Proof. We will show only that if (r) is maximal w.r.t. principal ideals then 7 is
irreducible. The other direction appears as an exercise.

Assume that (r) is maximal w.r.t. principal ideals. Let » = ab. Then, since alr, it
holds that (r) C (a), and since (r) is maximal w.r.t. principal ideals it must be the
case that (a) = (r) or (a) = R. If (a) = R then a is a unit. If (a) = (r) then a = rcso
r =rcb and (1 — ¢b) = 0. Since R is an integral domain, either » =0 or 1 — ¢b = 0.
Since r # 0 it follows that ¢b = 1 so b is a unit. m

Figure 7 summarizes the relations between prime and maximal ideals of an integral
domain. Note that since in principal ideal domain every ideal is principal, it follows
that if r is irreducbile then (r) is maximal.

5.5 Gaussian Integers

In the followng we define a commutative ring, and show some of its interesting proper-
ties. Define Z[i| = {a+bi | a,b € Z} where i* = —1. Note that this is a commutative
ring.

We show that some irreducible elements of Z are reducible in Z[i]. We know that 5
is irreducible in Z but in Z[i] it holds that 5 = (2 + ¢)(2 — ). Note that (2 + i) and
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r is irreducible
iff

(r) is maximal

r is prime
iff
(r) is prime

w.r.t. principal ideals
AN T

(r) is maximal

Figure 7: The relations between prime and maximal ideals of an integral domain.

(2 — i) are not units, so 5 is reducible. Indeed, assume that there exists a,b € Z such
that 1 = (a + b7)(2 +¢). Then

1=(a+0bi)(2+1i) = (2a —b) +i(a+ 2b),

and we get 2a —b = 1 and a+ 2b = 0 which has no solution in Z. A similar argument
shows that 2 — 4 is not unit. This is an interesting result, by adding elements to Z we
made an irreducible element reducible.

We show that some irreducible elements of Z remain irreducible. In particular, we
show that 3 is irreducible in Z[i]. We even show a stronger claim, that (3) is maximal.
Assume that (3) € I C Z[i] where I is an ideal. Then there exists some r + si € [
such that r 4 si ¢ (3). Since (3) = {3a + 3bi|a,b € Z}, it holds that either r or s are
not divisible by 3.

Look at t = 72 + 52, and notice that 0> = 0 mod 3, 1> = 1 mod 3 and 22 = 1 mod 3.
So either 7% or s? are not 0 mod 3, and t = 72 + s? # 0 mod 3. Thus, t and 3 are
coprimes in Z so there exists some u,v € Z such that 3u + tv = 1.

Finally, note that 72 + s* = (r + si)(r — s1) so

3 u+ (r+si)(r—si)v=1,
el o7

and it follows that 1 € I, and I = Z[i]. Hence (3) is indeed maximal, and it is also
irreducible.
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LECTURE 6
FIELDS

In the previous lecture we’ve discussed some new properties: primality and irre-
ducibility. First we looked at prime elements and irreducible elements and afterwards
we discussed prime ideals and maximal ideals. We discussed the strong connections
between these definitions. Also, we have seen how we can construct new ideals using
existing ideals and for dessert we started testing these properties in the Gaussian
Integers ring.

6.1 Ideal Properties - Continued

6.1.1 From Previous Lecture

Claim 1. let r € R commutative ring

1. 7 is prime < (r) is prime

2. r is irreducible < (r) is mazximal ideal among principal ideals
3.(r) is maximal = (r)is prime

4. 7T 18 prime=> r s irreducible

5. 1 is irreducible = (r)is maximal if R is P.1.D

6. (r) is mazimal < % is a field

6.1.2 Gaussian Integers

In the previous lecture, we saw that (3) is maximal in Z [¢], and that 5 is not irreducible
since 5 = (2 +4)(2 — 7) and hence (5) not maximal from (2).

Claim 2. (2 +i) is mazximal in Z [i]

Proof. We could have shown like we did in (3) that there is no bigger ideal, but let’s
try another way. Now we will show that Z [i]/(2 + i) is a field and by (6) it follows
that (2 +4) is maximal.

(2414 ={2+1i)(a+bi)|a,beZ} ={(2a —b) + (a + 2b)i|a,b € Z}

Let’s define a« = 2a—0b, 8 = a+2b. Let’s pay attention: 2a+ 5 = 2(2a—b)+ (a+2b) =
oa

We can quickly see that a necessary property (but might not be sufficient) for elements
in our ideal is that 5|(2a + 5).
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Lemma 6.3. (2+14) = {a+bila,b € Z,2a+ b =5 0} (Our property is also sufficient)

Proof. We only need to show that if 2a + b =50, a 4+ bi € (2 + 1)
a+bic(24+1i) < a+bi+ai(2+i)e 2+1i) < (2a+b)iec (2+1)
We know that 5= (2+4)(2—1i)so5 € (241) so (2a+b)i € (24 1) O

Lemma 6.4. Let [ = (2+1), we’ll prove that Z[i]/I ={I, i+1, 2i+1, 3i+1, 4i+1}

Proof. First of all, we will show that every two elements are different. Assume ai+1 =
bi+ 1 soai—bi€lso(a—0b)=50so0a=b (botharein 0,1,2,3,4).

Now we will show that there are no others. Let there be a +bi + I so a +bi + I =
a+bi+ai(2+i)+1=a+bi+2a—a=(b+2a)i+ 1.

Since 5 € I, we can choose whichever ¢ we want such that b+ 2a — 5¢ € {0,1,2,3,4}
and a+bi+1 = (b+2a—"5¢)i+ I and we get that: a+bi+1 € {I, i+1, 2i+1, 3i+
I, 4i+1} O

Lemma 6.5. Z[i|/I is a field

Proof. Since it is a quotient ring, it satisfies all the axioms of a field, except for the
existence of multiplicative inverses. We will show that easily.

First of all 2¢ 4 I is the unit element:

Let c € {0,1,2,3,4} so (2t + I)(ci+ )= —2c+ 1= —-2c+c(2+i)+[=ci+ [
Now we need to show that every element (except of zero which is ) has an element
such that their multiply result is 2 + [I.
(Bi+1)3i+1)=—-9+1=—-9+5+4+2(2+1¢)+1 =2i+1so3i+1 is its own inverse.
(di+1)(i+1)=—-4+1=—-4+22+1i)+1=2i+1so4i+ I is the inverse of i 4 I.

So we showed that every element has an inverse. O]
We proved that Z[i]/I is a field. So it follows that I is maximal. O
6.1.3 Z[\/ —5]

We can define a different ring like this:

Z[V/=5] = {a + by/=B|a,b € 7}

In this ring, some strange things happen. Let’s look at two different factorizations of
6: 6=2%3=(1++/-5)(1—+/-5)

We'll recall that p is prime if plab — p|a or p|b, but in this case we will see that 2|6

but 21 (1 ++/=5) and 21 (1 — v/=5).
Lemma 6.6. 21 (1++/=5) and 21 (1 — /=5)
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Proof. Assume by contradiction that 2|(1 + v/—=5). So, there exists a,b € Z s.t.
2(a +bv/—=5) = (1 ++v/-5).
It follows that, 2a = 1, but @ = 1 ¢ Z. The same is true for 2 (1 — v/=5). O

Lemma 6.7. 2 is irreducible

Proof. We see that every element in our ring is also an element in the complex numbers
field. Recall the norm of complex number:

la +bv/=5]l2 = [la + bv/5ills = Va2 + 56

Notice that every element 0 # r € Z[v/=5| in our ring it holds ||r||; > 1. We are
looking for two elements x,y € Z[\/—5] which their multiplication result is 2. So,
because ||z||2, ||y||2 > 1, it follows that ||z||2, ||yl < 2 . If b # 0, its norm is at least
V5 50 b, = b, = 0. Therefore we are in Z and there is only 2 = 1% 2 = (—1) * (—2)
where 1, -1 are units also in Z[v/—5] O

Because 2 is irreducible but not prime it follows that Z[/=5] isn’t P.I.D. This fac-
torization reminds us of a fact from Z: 60 = 15 x4 = 10 % 6 where 4 { 10,6 but we
know that it is because we didn’t factorize 60 to its prime components.

Recap some definitions:

Definition 6.8. Let R be commutative ring and I, J ideals in R.
(i,5) = (i) + () = {zi + yjlz,y € R}
IJ={> ijelVn eN, iy €1, j. € J}

k=1

Fact: IJCINJ
Let’s take a look at(6)and see the factorization ideals behavior. Obviously,(6) = (3)(2)

Lemma 6.9. (3) = (3,1 — v/=5)(3,1 4 /=5)

Proof. Let’s start by proving (3) C (3,1 —+/=5)(3,1 + v/=5).

For that we want to show that the element 3 can be produced by a multiplication of

ij where i € (3,1 —v/=5), j € (3,1 ++/=5). We'll notice from the fact above 3 €

(3,1—+/=5)N (3, 14++/=5) doesn’t necessarily mean that 3 € (3,1—+/=5)(3, 14++/=5)

We know that 9 = 3%3 € I.J, and —6 = —(1—+/—5)(1++/=5) € I.J, so from additive

closure it follows that 3 =9+ (—6) € I.J

Let’s now prove the other side: (3) D (3,1 —+/=5)(3,1+ /=5)

We'll show that Vij € (3,1 —+/=5)(3,1 4+ /=5), 3|ij

let ij € (3,1 —+/=5)(3,14+v/=5).ij = (a%3+bx (1 —v/=5))(cx3+d*(1++/=5)) =
6

A\
~ ™~

9ac + 3(1 ++v/—=5)ad + 3(1 — v/=5)bc + (1 — v/ =5)(1 + v/ —5)cd.
So, it’s easy to see that 3|9ac, 3|3(1 4+ +/—5)ad, 3|3(1 — /—=5)be, 3|6cd, so 3|ij.

]
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Lemma 6.10. (2) = (2,1 + /=5)?

Proof. Let’s start by proving (2) C (2,1 + y/—5)?
We want to show that the element 2 can be produced by a multiplication of ij 7,5 €
(2,14++/-5)

€(2,14+/—5)? €(2,14+/—=5)?

-~ -~

4 =-2%x2€(2,14+vV=5)% 6=2—-1+V=5)1+V=5) € (2,1++/=5)% so
from additive closure it follows that 2 = 6 + (—4) € (2,1 + /—5)?

Let’s prove the other side: (2) D (2,1 + y/=5)?

We'll show that Vij € (2,14 v/=5)?%, 2|ij

let ij € (2,1 4++v/=5)%ij = (a*x2+bx* (1 ++/=5))(c*x2+dx*(1++-5)) = 4ac +
—4+42v/=5

~ ~

2(1+ v=5)ad +2(1 + /=5)bec+ (1 + vV =5)(1 + V—5)cd.
So, it’s easy to see that 2|4ac, 2|2(1 4 +/—b)ad, 2|2(1++/—5)bc, 2| —2(2++/—5)cd,
so 2[ij. O

From the previous lemmas we get that

(6) = (3)(2) = (3,1 — V=5)(3, 1 + V=5)(2, 1 + V=5)(2, 1 + v/=5)

Similarly, we can show that

(3,14 v=5)(2,1++/=5) = (1 ++/=5) and

(3,1 = v=5)(2,14v/-5) = (1 - V=5)

so we also get (6) = (1 + /—5)(1 — /=5)

and because we saw earlier that 6 = (1 ++/—5)(1 — y/=5), we can see that the ideals
behave correctly.

Earlier, we didn’t see the connection between 6 = 3 2 = (1 + v/—5)(1 — v/=5), but

when we worked with the ideals, they factorized “better” than the numbers.

6.2 Fields

6.2.1 Fields of Fractions

For every integral domain, we would like to find the "smallest" field that contains
this domain. We have some intuition on how this field would look like (fractions) and
when the two fractions are equal. Let’s use this intuition to define it formally.

For integral domain R we’ll define the set S={(a,b)| a € R, b € R/{0} }

We'll define equivalence relation ~ on S s.t (a,b) ~ (¢,d) <= ad = bc

Q(R) = {[(a,b)]|(a,b) € S}( [] =equivalence class of ~)

Lets define the (+,*) of Q(R):

[(a, )]+ [(¢, d)] = [(a* ¢, b+ d)]
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[(a,0)] 4+ [(e,d)] = [(a*xd+bxc,bx*d)]

(For the multiplication we now use that this is integral domain and b * d # 0)

It’s easy to see that this is well defined and that Vr € R there exists [(r,1)] € Q(R)
which isomorphic to r

In addition, Vr # 0 € Q(R) exists s € Q(R) s.t r*s=[(1,1)] (it is s = [(1,7)]).

For example, if Q(Z) = Q and the equivalence relation ~ defines all the fractions we

cxa

are familiar with ([(a,b)] = g = E)

Theorem 6.11. F' is a field and R C F. So3p : Q(R) — F s.t ¢ is monomorphism.
(without proof)

This is a very strong theorem which claims that every field that contains our ring
actually contains the field of the fraction we just defined. That means that this field
is actually the "smallest".

6.2.2 The Polynomial Ring

Sometimes we know an element which isn’t in our field, and we will find a way to
"add it" by an equation. For example, i ¢ R but we know that it is the element
which solves 2 +1 = 0. Sometimes we won’t be able to add the element (for example
7 ¢ Q which is transcendental).

Definition 6.12. R[z] = {} ., rz'|r; € R, n > 0}

Where R[z] located in the following order?

Field < PI.D < I.D < C.R

Notice that R[z] can’t be smaller than R in the order.

1. If Ris cr, R[z] is c.r.

2. If Ris LD, R[x] is also 1.D:

Let (az™ + ...), (bx™ + ...) polynomials, since R is I.D, a,b € R it follows that
a*xb##0so (ax™+...)* (bz™ 4+ ...) is not the zero polynomial.

3. If Ris PID,R[z] is I.D. Of course that R[z] is at least I.D, because if R is P.I.D,
it also I.D.

Why isn’'t R[z] a P.I.LD? For example, Z is P.I.LD but the ideal < 2,z > in Z|x] is not
principal so Z[z] is not P.I.D.

What if R is a field?

Lemma 6.13. If R is a field, R[x] is P.I.D

Proof. 1.R[z] is not a field
Because there is no inverse to = in R[z].
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2.R[z] is P.I.D
For each ideal, we’ll find a polynomial that creates it.
Reminder: degree of polynomial -

e deg(a) =0
e deg(0) = —o0
o Let f,g € R[z], deg(fg) = deg(f) + deg(g)

e Let f,g € Rlx], deg(f + g) < max(deg(f), deg(g))

In order to prove that R[z] is P.I.D, we’ll show that every {0} # I C R]z| ideal is
principal.

We know that every polynomial g(x) can be written as g(z) = q(z) f(x) + r(x) where
r(z) is a remainder such that deg(r(z)) < deg(f(z)) or r(z) =0

We’ll take f(z) # 0 with minimal degree in I.

el
~ =

X
g(x) = q(x) f(z)+r(zx), so it follows that ¢(z) f(z) € I and that r(x) € I. Sor(z) =0,
because f(x) has minimal degree in I.

Therefore, I = (f(x)) O
Definition 6.14. A polynomial is monic if its leading coefficient is 1. (a, = 1)

Also if I = (f(x)) for f(x) monic, f(z) is unique.

6.2.3 Building Finite Fields

Let’s look at an interesting way to build finite fields.

We just proved that if F is a field, F[x] is P.I.D We also remember that in a P.I.D for
every irreducible element f, (f) is a maximal ideal. The last crucial claim we proved
is that for / maximal ideal, F[z]/(I) is a field.

By looking at the quotient ring of infinite field and a maximal ideal, we can build a
finite field. Let’s look at some examples.

6.2.3.1 Finite field of 4

F5[z] is an infinite field (polynomials with coefficient 0 or 1).

We'll prove that Fylx]/(z* + z + 1) is a field by showing that 2% +z + 1 is irreducible.
Let’s try to factorize x2 4+ = + 1 into two polynomials which are not the units.

Let g(z), f(z) polynomials such that 224+z+1 = ¢(z) f(z). It follows that, deg(q(z))+
deg(f(z)) = 2. The only polynomials with degree 1 are z,z + 1.
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But, z(z+1) =22+, zxx =22 (r+1)(x+1) = 22+ 1 and they are all not equal
to %+ + 1.

Therefore 22 + z + 1 is irreducible, and (z? + x + 1)is maximal (F,[z] is P.I.D), so it
follows that Fy[x]/(z? + x + 1) is a field.

We'll show that |Fylz]/{(x? +z + 1)| = 4

Lemma 6.15. Fyfz]/(z* + o+ 1) ={,1+L,o+1,x+1+1}
~—_———

1

We'll give an intuitive explanation why there are no more elements in this field:
Since I is the zero element in Fy[z]/I, we can think of 22 + 2 + 1 = 0. From this we
see that 22 =z +1 (=1 =11in F).

So, for every degree d > 2 ¢ can be written as a linear expression of z.

For example, 2 = 22 xr = (v + )z =2’ +r=a+1+z=1.

Now, we’ll show that each element in this field is different:

We know that f+1=9g+1 <= f—gel

Assume by contradiction that two of the co-sets are equal, g + I = f + I such
that deg(g),deg(f) < 1 so by the previous sentence g — f € I and we know that
deg(g — f) <1 but it means that 2> + x + 1|g — f but polynomial of degree 1 can’t
be factorized into polynomial of degree 2.

Define I =0, 1+ =1, z4+1=a, c+1+1=0b
Let’s explore the multiplication matrix of this field:

| [of1]a]b]

axa=(x+N(z+)=2*>+I=x+1+1=0
axb=(x+Nz+1+)=2>+z+I1=1+1=1
bxb=(r+1+N(x+1+1)=2*+1+I=z+I=ua

[ea) Nen) Hev)l Nav) | e}
TN || O| -
— T O
| =T O T

T || O

6.2.3.2 Finite field of 8

We'll take Fplz]/(z® + z + 1). One can show that 2° + z + 1 is irreducible (similar to

the previous example), Therefore Fy[z]/(z® + x + 1) is a field.

B /(e* + o+ 1) = {1+ a+1,0+1+1, 2+, 2> +1+1, 2% 4o+ 1,22 +o+1+1}
—_——

I
Same as in the previous example, these are the only elements in the field because we

can’t factorize a polynomial with a polynomial with a higher degree.
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6.2.3.3 Finite field of 9

The same procedure can be done with F3[z]/(z? 4+ 1) and we will get a finite field of
size 9.

In general, we can build a finite field of size p™ for p prime, by taking F,[z] and
an irreducible polynomial f(z), deg(f(x)) = n. The field will be F,[z]/(f(z))

6.2.4 Building The Complex Field

This might be the most exciting part of this subject - building C. In R the polyno-
mial z? + 1 has no roots and we know it is irreducible. Therefore, we can look at
R[z]/(z* + 1) when we know it is a field.

Rlz]/{(z? + 1) = {f(x) + (z* + )| f(z) € R[z]} = {a + bx + (* + 1)|a,b € R}
Similar to the previous examples, we can look only at a+bx where we know "22+1 =
0" or equally "z% = —1".

We'll look at our polynomial in the new field, and call it > + 1. We can actually see
it has a root - the co-set: x + I (where I = (z? +1). We use t since x is no longer an
abstract symbol but an element in our field.

We'll substitute t = x + I in the polynomial ¢* + 1:

(x+ 1) +1=2*+T+1=2>+1+1=1TIsince (x> +1) €

Let’s explore how multiplication works here:

(ax + b+ I)(cx +d+1I) = acz? + (bc + ad)x + bd + I = (bc + ad)z + (bd — ac) + I
This is actually similar to multiplying elements in C...
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LECTURE 7
FIELD EXTENSIONS

7.1 Recap - Constructing C from R

We want to find roots for the polynomial p(x) = z* + 1 in some other related field.
We look at the following quotient ring:

TRl [y
———

1

Note that R[z] is a ring and that 2 + 1 is an irreducible element in that ring. Since
R[z] is a p.i.d, (z? 4+ 1) is a maximal ideal, thus C is a field.

Claim 1. R < C, i.e R is embedded in C, that is -
Jp:R—=C

s.t v is a monomorphism (1:1)
Proof. We choose ¢ to be ¢(r) =r+ I.

e ( is a homomorphism:
- o(lg) =1+1=1¢
- or+s)=r+s)+I1=0+I1)+(s+1)=p(r)+¢(s)
- plres) =)+ I=(r+ 1) (s+1)=(r) - ¢(s)

e ¢ is a monomorphism since ker p = {0}.

Claim 2. 4?4+ 1 has a root in C
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Note that even though y? + 1 and 22 + 1 are the same polynomial (as they have the
exact same coefficients), y? + 1 lies in C[y], and should be written as following:

Clyl> eM)y?+¢(1) =
(1+I)y +(1+1)=
1+ @+ 1)+ (1 +(2* + 1))

Proof. We will show that z + I is the root of y? + 1 € C[].
Let’s assign « + I to y in the above polynomial:

(1+1) - (x+1)? + 141 =
——

An element An element An element

of the of the of the
quotient ring quotient ring,  quotient ring
squared

lz-x+1 +1+7=
1+ 1=
0+1

Corollary 7.3. i is the root of > + 1 in C.

We saw that z is the root of y? + 1, and we can change our markings.

7.2 Field Extentions

Definition 7.4. Let F', K be fields. F' C K is a field extension w.r.t K’s addition
and multiplication operations - (+, -).
That is, F € K™ is a field extension if by using K’s addition and multiplication
operations we create the field (F, +,-)

If F C K is a field extension we say:

e [is a subfield of K

e K is an extension (or a field extension) of F
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We mark a field extension with K/F
Examples:

e R is an extension of Q
e C is not an extension of Z,, addition in C is not like addition in Z,.

e C is an extension of R. Recall that C = R[z] / (x? 4+ 1) this means addition in
C has the following form:

(f(@)+{2® + 1)) + (g(2) + (@* + 1))
We assign r1,ry € R:

(r+(2®+ 1) + (ra+ (2> + 1)) =
T1+T2—|—<332—|—1>

The result in R is the representative r{ 4 ry.

Observation. If K/F is a field extension then, in particular, K is a vector space
over F'.

To construct this vector space we create linear combinations of elements from K with
coefficients from F' (we don’t multiply elements from K with each other), for example:

ki + ko
fk
fofiki + foko

Definition 7.5. Let F', K be fields s.t. K/F is a field extension. we define the degree
extension of K/F by [K : F| := dimp K, which is equal to the minimum size of a
group {]{Zl, ...,kn} - Kst. VkEe K Elfl, ,fn eF k= Z?:()fzkz

Claim 6. [C:R] =2

Proof. Using 1,7 € C we can represent all members in C as a linear combination with
prefixes from R:
Vee Cda,beR:c=a+ib — [C:R] <2,
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in addition they are linearly independent - if there exist 0 # a,b € R s.t.

a-1+i-b =0 we will get that i = —¢ € R, which contradicts the fact that

i¢R—[C:R =2 O
Claim 7. [R: Q] =

Claim 8. [F,: Fy] =2

Proof. By definition,
F, :F2[$]/<x2+$+1> = {ax + b+ (2* + 2+ 1)]a,b € Zy}
using 1, x € 4 we can represent all the members in Fy:
VfeFFa,b€eFy: f=a-14+b-x— [Fy:Fy] <2

and since 1,x are linearly independent, |F, : Fy] = 2. O

Claim 9. [Fg : ]FQ] =3

Proof. By definition,
FS:F2[$]/<$3+3;+1> ={ar*+br+c+ <2 +z+1>|a,bc€l }.

using 1, z, 2% € Fg we can represent all the members in Fyg:
VfeFsJa,bceFy: f=a-2>+b-x+c
therefore [Fg : Fo] < 3, and since 1, z,z? are linearly independent [Fy : Fy] = 3. ]

Claim 10. [Fg : Fy] is undefined since Fy is not a field extension of Fy: x-p, v = 2° &
F,.

Definition 7.11. Let F be a field. the characteristic (char) of F is the least integer
n>1st. 1+---+1=0if such n exists, otherwise the char is defined to be 0.
—_——

n times

Claim 12. If Fis a field of char 0, then Q — F.

Proof. F is a field therefore Va € F exists both —a and a™! s.t. a + (—a) = 0 and

1

a-a = 1p we will build a monomorphism ¢:Q — F' in the following way:

o(3) = ab™!
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e o is homomorphism since V3, d eQ:
- p(lg) = p() =mepmy' = 15 (m #0)
- (8- <) = (L) =apcpdp bp " = (anF_1> (CFdF_1> = ¢(3) - 9(3)
- gO(%—l—fl) = gO(adb—ZbC) (aFdF+chF)(deF) = (IFdFd b ‘l‘bFCFd b
apbp' + cpdy' = o(%) + ¢(£)

e (» is a monomorphism since:
P($) =0 < apbp ' =0 < a-1p =0 < a=0— kerp = {0}.

Claim 13. If F' is a field of char n # 0, then n is prime.

Proof. Assume n is not prime, therefore Ja,b € N s.t. 1 < a,b < n and n = ab. by
the definition of fields characteristic, n > 1 is the minimal integer s.t. n-1r = 0 and
therefore ap,br # Op. since a-b=mn, ar - bp = 0, ar and b are both zero divisors
in F, but fields does not contain zero divisors since they are also integral domains,

contradiction.
O]

Claim 14. If F is a field of prime char p # 0, then Z, — F.

Proof. We will build a monomorphism ¢ : Z, — F'.

pla) =ar

e ¢ is a homomorphism since Va, b € Zj:

- ¢(1z,) = 1r
- pla+b) = (a+b)r=ar+br=p(a)+pb)
- pla-b) = (ab)p = ap - bp = p(a) - p(b)

e ¢ is a monomorphism since ker ¢ = {0}, otherwise there exists 0 # n € Z, s.t.
©(n) = np = 0, which contradicts the minimality of char(F') = p.

]

Observation. For every field F', Z, — F if char(F) = p # 0, and Q — F otherwise.

Claim 15. Let F' be a field. char(F) is 0 or a prime.
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Proof. Let’s assume char(F') = n which is not a prime.

n is not a prime, by definition 3,, st n =a-band 1 <a <n,1 <b<n (a,b#0
since n is minimal).

char(F) :\(1+1i...+1)/: n=0_0

definition

n
[0}

char
thus, 0 = a - b which means a, b are zero divisors in F' which is a contradiction to the

assumption that F'is a field. = char(F') is a prime or 0 O

Example 6 can’t be characteristic of any field, otherwise
141+141+14+1=0=(1+1)+(1+1)+(1+1)=0=2-3 =0 - zero divisors

— N N —
2 2 2

Definition 7.16. Let F be a field and ¢ : Z — F homomorphism where ¢(1) = 1p
we know that ker ¢ = nZ = (n) or {0} because Z is a p.i.d. From the first isomorphism
theorem:

Z]ker p = Imyp

We note that Imp C F so it must be at least Integral Domain - meaning Z/ ker ¢ is
also Integral Domain. we know that R/P is I.D iff R is a ring and p is a prime ideal.
in our case Z is a ring and Imy C F'is I.D so ker ¢ is a prime ideal.

meaning ker ¢ = pZ. We define:

chary(F) :

p keryp = pZ
0 kery={0}

Claim 17. chary(F) = char(F)

Proof. Let chary(F') = p. By definition, p € ker ¢ ;meaning p(p) =0
(1+1+..41)=0= p=char(F). O

(. J/
-~

p

Corollary 7.18. FEvery finite field K is of size p™ where p is a prime andn € N;n > 1.

Proof. char(K) # 0 because K is a finite field.

We know K is a field with prime characteristic p so it contains F,: F, — K.

For a finite K where char(K) = p then K is a vector space over F, with finite
dimension because K is finite.

dimp, K =n < 00
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Therefore, 3y, v,,...onek St YeekIn Mo, AneF, St
n

k= E )\ivi
i=1

{v1,...,u,} are the basis vector set of K over F' = thus |K| = p". O]

Example
Fi=Ffz]/ <2®*+z+1>={a+br+ <z’+x+1>]abeF}

14+1=0= charFy =2
{1+ 1,z + I} are the basis vectors = dimp,F, = 2
Fy| =2° =4
Claim 19. If L\ K and K \ F are field extensions then

[L:F|=I[L:K|K:F|

Proof. Let’s assume first that [L : K| and [K : F] are finite.

L:K]=n [K:F]=m
dz’mKL:n:>E|{ll

.....

dimpK =m = EI{/ﬂ

-----

~~~~~~~

j=1
Viee 1= > Ji-ki-L

i=1 j=1
which means that V = {v; jlv;; = k; - [;,1 <j<m,1 <i<n}
is a spanning set of L over F

dimpL <n-m

now we need to prove that the spanning set is also linearly independent. let’s assume
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it’s linearly dependent.

Hvi/J/GV — Elfl ..... foom€EF 7 E fivi = Uy jr

veV
vFEV
n m
kb= fiki- b
i=1 j=1
#i g
fi -k
=X B
e I
I#Ly

which is a contradiction of the vector basis of L. over K.

if [L: K]or[K:F|areoo— [L: F|= o0, if the latter is finite we could find a finite
vector basis to both K over F and L over K in the same way we built the basis vector
of L over F. O

Definition 7.20. Let K/F be a field extension. a € k is algebraic over F if there
exists a polynomial 0 # f(x) € Flx] s.t. f(a) =0
If such polynomial doesn’t exist we define a to be transcendental over F.

Example i is algebraic over R because
Riz] > f(x)=1-2>+1

fli))=1-+1=0

Claim 21. The numbers w, e are transcendentals over Q.

Note V,cr = a is algebraic over F, because:

Peg solitaire Peg solitaire (or Solo Noble) is a board game for one player involving
movement of pegs on a board with holes. The board starts filled with pegs beside the
center, and using the allowed moves the player needs to remain with only one peg.



Starting Board

-
e |
L

allowed movements

L L
L] L ]
ey
R
1 1 00 — O88 *8 0 — OO8
L]
& i
L [

Using what we learned we can prove that the remaining peg can only be placed on
one of the marked placed

e[e)e
eee
eeccecee
[ele o[C|e o8]
secesee
eee
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LECTURE 8
FIELDS AND POLYNOMIALS

8.1 Proving final locations for a winning Peg Soli-

taire game

We finished the previous lecture starting to prove a property of Peg Solitaire. Peg
solitaire (or Solo Noble) is a board game for one player involving movement of pegs
on a board with holes. The game starts with the following board configuration of
pegs. A dark dot at location (i,j) means that there is a peg at that coordinate.

® @ ®
-1,3) 0,3 (1,3

(-1,2) (0,2) (1L,2)

® ® ® ® ® ® ®
3,1 (21 FLD) 0D (LD 2,10 Gy

® L] ® ] L] e ®
=3,0)  (-2,0) (-1,0)  (0,0) (1,0 (2,00 (3,00

° ® ® L] ® ° ®
-3,-1) (2,71 LD (0,1 (Lm0 (2D (Ge-D)

(=1,=2)  (0,-2) (1,-2)

(-1,-3)  {0,-3)  ({1,-3)

image 1: starting configuration of the image of starting configuration.

A valid move is to jump a peg orthogonally over an adjacent peg into a hole two
positions away and then to remove the jumped peg. The game is won whenever there
is only one peg left on the board. It turns out, that the location of that winning peg
can only be in one of 5 coordinates - the center of the board (0,0), or the centers of
the outer sides of the board (0,3),(3,0),(0,-3),(-3,0), as shown in the image below.
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080
00|10
OO0O00|0
| J@lle] Jielel] |
OlO00I00|0
00|10
Oe0

image 2: possible locations for the last peg in a winning board.

We will now prove that the location of the final soldier in a winning board is al-

ways one of the those locations specified above. The idea is to understand the

connection between the possible movements of each peg and a finite field of size

4. F, = F2[x]/ = {0, 1, x, z+ 1}. For every board configuration
4 < xQ +r4+1> { )y } Yy g

B, we shall define two functions and show that they maintain a certain invariant,

summing up all pegs that are currently on board at all locations (i,j), under Fj.

The first function:
JB) =%a", f(B)eF
)
The second function:

o(B) =32, g(B)eR
(3,5)

both are sums going over the locations (i,j) of pegs for a board configuration B.

Claim 1. For a starting game configuration B0:
f(Bo) =1=g(Bo)

Proof. In order to sum the result over the entire board, we will calculate the sum of
every three holes. Every row of three holes with three pegs in them can be described
(using f(B)’s phrasing) as:



So for that triplet of holes, if there are three pegs, then their accumulation
7€ 4 getl 1 pet2
is added to f(By) for every triplet of pegs. Note that:
¢4 o 2t =21+ 2t +2?) =20, =0

This can also be proven to each column of three holes. In total, in a starting configu-
ration the board is full of triplets of pegs, with only one triplet left that includes the
center hole, with no peg. The addition of that triplet to fis 1, and so in total we get
f(Bo) = 1. The same can be proven easily for g(By) O

Claim 2. For every board configuration B:
f(B) =1=y4(B)

Proof. Assume a move in which a peg jumps over another peg adjacent to it in the
row, into an empty hole according to the rules. The score of the triplet of coordinates

for function f before the jump:
xc xC-ﬁ-l O

[} [ ] o

(the pegs in the first and second locations are given scores, and the third hole is empty
so no score is given). The score of the triplet of coordinates after the jump:

(There is only one peg left, in the hole that was first empty).
From the previous claim we see

$C + :L,c-‘,-l + ZL‘C+2 — 0 = xc + ZEC+1 — :L,c+2

(Fy is binary). This can be proven for the g invariant as well, and so every board
configuration gets the same score both before and after the move. ]

Using the two claims above, we conclude that in a winning configuration By, the sum
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of both f,g remains 1. There is only one soldier left, in location (i,j). This means:
f(By)=a"" =1, g(By)=2""7=1

We are in Fj, and if we mark i+j=c, i-j=d, we see that the only option for x¢ =
1 = 2¢ is for 3 to divide both ¢ and d: 3|c, 3|d. This only happens for coordinates
(0,3),(3,0),(0,-3),(-3,0) and (0,0), which are always the final coordinates for a winning
peg in Peg Solitaire.

8.2 Back to Fields

Definition 8.3. Let F' C K and K is a field extension of F'. We say that a € K is
algebraic over F if there exists f(x) € F[X] such that f(z) #0 and f(a) =0. If a
isn’t algebraic over F', then we say that a is transcendental.

There is a small issue with the definition above because we think of the polynomial
as a function. In order to use that definition, we have to define assignment in a
polynomial.

A polynomial is an infinite sequence of coefficients in F that has a finite number of
coefficients that are not zero: (fo, f1,...) € F. Each of the coefficients corresponds to
2%, 2%, ... and so we get

fol’o —+ fll'l + ...

When assigning a, we get:
fo-ad®+fi-a+ ..+ f,-a"

But in doing so, we think of the polynomial as a function. We need to define this.
The way to define assignment inside a polynomial is done using homomorphism (for
example, assignng m):

ey : Rim| — R

1.e.

ao+ay -+ ... +apx™ — ag-m® +ay-mt +a,-m"

from this definition for polynomials, we can conclude:

L f(m) +g(m) = (f + g)(m)
2. f(m)g(m) = (f - g)(m).
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Since it is a homomorphism, we know it has a kernel:
Im ev,, = R
and
Ker ev,, =<x—m >

i.e. all the polynomials that m divides. (In other words, if we assign m and the
result of the assignment is 0, then x —m divides the polynomial. Thus, from the first
homomorphism theorem we get:

Rl / ~ R
<TrT—m >
Assigning m in a polynomial f is in fact, finding the representative with the lowest

degree in the coset of the polynomial: f(z)+ <z —m >=r+ <z —m >.

Definition 8.4. Suppose K is a field extension over F. K is called an algebraic
extension if for every a € K, a is algebraic over F.

Definition 8.5. Suppose K is a field extension over F'. K is said to be a finite
extension if

[K : F] < o0
(Reminder: [K : F| = dimpK)

Theorem 8.6. Fvery finite field extension is an algebraic extension.

Proof. K is a field extension over F' such that [K : F] = n < oco. We need to show
that the extension is algebraic. So, Let some a € K. We want to show that there
exists f(z) € F[X] s.t. f(a) =0.

Let us examine the following n+1 elements: 1,a,ad?,...,a" € K. Because we selected
more than n elements while and there are exactly n elements in the basis, we deduce
that the elements are linearly dependent: 3fy, f1, ..., fn € F not all zeros s.t.

forl+fi-a+...+f,-a" =0

and so the polynomial that fulfills f(a) =01is f(z) = >, fiz". O
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8.3 Polynomials

Definition 8.7. Suppose that K is a field extension of F. Let a € K be algebraic
over F, and let n > 0 be the least integer such that there exists f(z) € F|x] of degree
n s.t. f(a)=0. Then n is called the degree of a, and we mark

degr(a) =n

It’s important to note that f from the above definition isn’t unique (It’s actually
unique if you include multiplication with f € F', and also if the definition states that
f is monic, meaning fo = 1).

The degree of a, n = degp(a) is, however, unique.

Definition 8.8. The monic polynomial that applies to the prior definition is called
the minimal polynomial

Claim 9. The minimal polynomial is irreducible over F[z].

Proof. Assume by way of contradiction that p(x) is the minimal polynomial and that
it is reducible, meaning it can be written as p(x) = f(z)g(x), where f(z),g(x) are
irreducible with deg g > 1,deg f > 1. a is algebraic over F for that f(z), and so
p(a) = f(a) - g(a) = 0. F is an integral domain and so the multiplication equals zero
implies that either f(a) = 0 or g(a) = 0. This means that one of those polynomials
is the minimal polynomial for a, a contradiction. O

Definition 8.10. Suppose that K is a field extension of F. Let a € K be algebraic
over F. Let

Fa) ={f(a) | f(z) € Flz] } C K

(This actually means to assign a (algebraic over F) in all polynomials of F, and group
them all together).

Our goal now will be to prove that F(a) is also a field.

Theorem 8.11. F(a) is a field.

Before we prove the above Theorem, let’s present a helpful lemma.

86



Lemma 8.12. Assume that D, F are fields, D is a finite field extension of F'. In
addition, D is an integral domain. So D is a field.

Proof. Take 0 # d € D. To show that D is a field, since it’s an i.d. all we need to
show is that d has an inverse, d’ € D.

We know that D is a finite extension, namely: [D:F] =n < oo.

That means, as we've seen, that D is algebraic over F', hence d is algebraic over F'.
Based on that, we know that there exists f(z) € F(x) such that f(d) = 0.

In other words, there is a polynomial f(x) s.t.

fo+ fid+ fod® + ...+ fod" =0
There are now two options: In case that fo # 0 :

—h, ) —/fn

f(d) = fid+ fod® + ... + fod" = —fo = ——d+ ——d*+ ..+ —=d" =1
Jo Jo Jo
Equivalently:
—f1i o, —f2q —fn 1
d|—/—d +—d +..+——d" | =1
T ot
eD

Hence - We've found d’s inverse (in brackets)!
In case that fo = 0:
dlfs + fod + o+ fud™] =0

Since D is an integral domain and d # 0, we can conclude that the the element inside
the brackets equals 0.

By induction, it is easy to see that d has an inverse.

All in all, we see that every d € D has an inverse in D, hence D is a field. O

Now, let’s prove the above theorem:

Proof. In order to use the lemma and deduce that F'(a) is a field, all we need is to
prove that F'(a) is a finite field extension of F.

a is algebraic = there exists p(x) € F[z] such that p(a) = 0.
mark deg(p) = degr(a) = n.
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Let f(a) some polynomial F'(a). Looking at f(x) - the polynomial that creates f(a).
We can write:

f(@) = g(@)p(x) +r(a)

when either r(z) = 0 or r(z) # 0 and deg(r) < deg(p).

f(a) = g(a)p(a) +r(a) and p(a) = 0, therefor f(a) = r(a), and we derive that for any
a we can find a polynomial of a lesser degree than f(a).

We also know that for every f, the maximal degree is n. Thus:

F(a) ={f(a)| f(z) € Fla]} = {f(a) | f(2) € Fla] Adeg(f) < n} = spanp(1,a,a*,...a""")
= [F(a): F]<n

We have shown that F'(a) is a finite field extension of F. Now, using the above lemma,
it is immediate that F'(a) is a field. O

Recap: Let K be a field extension of F' and a € K s.t. deg(a) = n.
Then, as we've seen: F'(a) is a field extension of F and [F'(a) : F] < n. We now want
to show that it is exactly n.

Claim 13. [F(a) : F] =n.

Proof. Showing a set of n elements in F'(a) that are linearly independent will prove
the claim. Let’s take the following set:

{1,a,ad?,...,a" '}

Assume that this set’s elements are linearly dependant over F: there exist fo, f1, fo, .., fn1 €
F', not all zeros, such that

fla) = fo+ fia+ fad®+ ...+ fo1a" P =0

This is a polynomial of deg n-1 s.t. f(a) = 0. This is a contradiction to the fact that
a is algebraic over F with deg a = n. So our assumption must be false, and these n
elements are linearly independent, as required. O
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8.3.1 Roots of polynomials

Definition 8.14. (Root of polynomial) Let F' C K and K is a field extension of F.
a € K is aroot of f(x) € Flz| if f(a)=

Claim 15. a is a root of f(x) <= x —a|f(z) in K/z].

Proof. <: Let x — a|f(z) then exits g(x) € K[z] s.t. f(z) = (z —a) - g(x), it easy to
see that f(a) = (a —a) - g(a) = 0.

—: Let f(a) = 0 and let write f(z) as f(z) = (r—a)-g(x)+r(x) for some polynomials
g(x) and r(x) in K[z]. we know from the division of f(z) in (x —a) that deg(r(z)) < 1
(since deg(x — a) < 1) = r(z) is a constant. After putting all together we get 0 =

fla) = (a=a)-g(a)+r(a) =r(a) = r(a) =0=r(z) = 0= f(z)=(r-a)g(z) O

Corollary 8.16. Let f(z) € F[z] with deg(f(x)) =n, f(x) can have at most n roots
i any field extension of F.

Proof. By induction on n above any field.

e n—1, trivial. e Let assume that every g(z) € Flx] with deg(g(x)) = n — 1
has at most n-1 roots in any field extension of F. e Step: Let f(z) € F[z], with
deg(f(x)) =n and a is a root of f(x), then f(z) can be written as:

f(z) = (x—a)-g(z) for g(z) € K[x] field extension of F. Since deg(x —a) = 1, and the
isomorphism between product of polynomials to sum of degrees, deg(g(x)) = n — 1
for any g(x) € K[z] that satisfies the equation above. From the assumption, g(x) has
at most n-1 roots, and including a, f(x) has at most n roots. O

Claim 17. Let f(z) € F|x] Then there exist K[z| field extension of F' s.t.

f(x) =Tl (x — a;). in other words, for any polynomial f(x) with degree n, exist
a field extension that we can find all n roots of f(x). For example, the roots of
2+ 1 € R[x], can be found in C[x] that is a field extension of R[x].

Proof. Let f(x) = p(z) - q(x), p(x) € F|x] and p(z) is irreducible w.r.t. F[z]. Then,
p(t) € (F[x]/ p(z) >)[t] = p(x) = 0=t —z[p(t) (from the claim above) = p(t) =
(t—x)-g(t). deg(g(t)) = deg(p(t)) — 1. We continue this process for all the factors of
f(@). O
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8.3.2 Derivatives: formal derivative

Definition 8.18. f(x) € Flx]:
o (") =n-a"!

e (f+9)=1+d

o (c- f(z)) =c- fl(z)

Property 818.1. (f-g) =f"-g+ f ¢

Claim 19. Let f(z) € F[z|, without know any of its roots, then f(z) has a repeted
root (i.e, Ja € K s.t (x —a)?|f(x)) <= < f>+ < f >#<1>. In less formal

words: ged(f(z), f'(x)) # 1.

Proof. — f(z) = (v —a)® g(x) = f'(z) =2 (v —a) - g(x) + (x — a)* - ¢'(v)
with (z —a)? € K,g(z) € Klz]. = (z—a)|f'(z), (x —a)|f(z) = < f(z) > + <
fl(x) >C<x—a>#E< 1 >

Second direction is left as homework. O
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LECTURE 9
FINITE FIELDS CONT.; SMALL-BIASED SETS

In this lecture we will finish discussing finite fields, present a construction for F,» and
present the problem of small-biased sets and some of the proposed solutions to it.

9.1 Extension Fields

9.1.1 Recap

In the last chapter, we have seen that by taking some f(z) € Fx] for some field F,
we may not have any or all roots of f(x) in F itself. However, we can extend F' to a
field @ in which f will have all its roots.

We have already shown that if f(x) is irreducible, then K := Fx]/(f(x)) is a field,
in which we view f(z) € F[z] as f(y) € K[y| where f(y) = (y—a)g(a), a € K,g(y) €
K[y]. We can continue this process until we find all roots of f, as every time we
perform this procedure, the degree decreases (deg(g) < deg(f)).

9.1.2 Splitting Fields

Theorem 9.1. Vf(z) € Fx] where f(x) is not constant, there exists an extension

field K of F' (which depends both on F and f) so that f(x) has all of its roots in K
and in particular f(x) = Hffi(f) (x —a;),a; € K (where there may be some i # j with

ai:aj

In addition, VF C K, aq, ...,a, € K, The smallest field which contains F' and aq, ..., a,
s unique up to isomorphism. It is called the Splitting Field of f over F
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9.1.3 Fl(ay,...,ay)

Definition 9.2. F(a) all the rational functions of a with coefficients form F'

Corollary 9.3. F(ay,...,a,) is all the rational functions of ay, ..., a, with coefficients
form F which is can be seen recursively as all the rational functions over as, ..., a,
with coefficients from F(ay1). F(ay,...,a,) = (F(a1)) (a9, ..., ay)

Example 9.4. ;_-li + a—l; € F(a,b) where the variables are a,b and the coefficients are

all 1 € F. But this can also be viewed as (#1) b + (%) b € (F(a))(b) where the
variable is b and the coefficients are (#1) , (%) € Fl(a)

9.2 Finite Fields

Previously, we have shown that for any primary number p € N there exists a field F,
where addition and multiplication are done as in Z mod p

9.2.1 Existence of [F)»

Reminder 1 (Fermat’s little theorem). If p is primary, then for any = € Z it hods that
P =x mod p

Claim 5 (Existence of Fyn). Let there be some p € N primary, and f(z) € F,
irreducible with deg(f) = n (assuming there is such f(x)), then Fp[z]/{f(z)) is a
field of size p™. Le. [K :F,| =n=|K|=p"

Corollary 9.6 (K as a vector space over F,). There are vy, ..., v, a base for K over
Fp

Reminder 2. K is a vector space over F, with base vy, ...,v, € K if Vk € K, k can be
written uniquely as ZLI a;v; where ay,...,a, € F,

Remark. An extension field is always a vector space over the base field, thus it’s order
is a power of the order of the base field.
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9.2.2 Construction of .

Let K be a field s.t. |K| = p", then Vo € K 2Kl = 27" = 1.

This is true because K \ {0} is a multiplicative group of size p™ — 1, and therefore
2P" = 27" 'z = r . This means that in a sense, the polynomial /%Xl —x € F,[z] holds
all the information about K (its roots are exactly the elements of K).

Consider the Polynomial 2" — x € F,[x], where p is prime and n > 1. We can use
this polynomial to construct an extension of F, with size p”. We know that there
exists some extension of F,[z], K, s.t. all the roots of 27" — z are in K.

Denote the roots of this polynomial by R = {ay, as, ..., apn }, note that there could be
repetitions in R, but we will show later that there aren’t.

Claim 7. R is a field

To show that R is a field we need to prove that Va,b € R:

1. abe R
2.a+beR

3.a'eR, a#0

The other required properties are trivial.
proof:

1. o =a, " =b = ab=a"b" = (ab)”" = abe R
2. (a+b)P" =a" + (7)) o+ (B))a?" 720 + ...+ b

Notice that for all 1 <i < p™—1, (p:) = i!(;’n—nii)! = p" - (something) = 0 mod p™

(since the characteristic of this field is p”, therefore we get (a+b)?" = a?" +b" =
a+bie at+beR

3.a#0,(aW' =(a"")t=a"! = ateR

OJ

It is left to show that there are no repetitions in R. We know from the previous
lecture, that a polynomial f has repetitions in its roots iff (f) + (f’) # (1). In
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our case, (27" — ) = p"aP" ! — 1 = —1modp, hence (27" — z) + ((2?" — x)') =
(" — x) + (=1) = (27" — z) + (1) = (1), therefore there are no repetitions in R. Tt
is easy to confirm that F, C R by assigning any element from F, to 27" — z. Finally
we get that R is an extension of F, with size p”.

9.3 Small Biased Sets

Definition 9.8 ( e-biased set). s € {0,1}" is called e-biased set if

¥r € {0,117\ {0} | B (-1 S e

Trying to phrase the definition in a more intutive manner: Let’s randomly select
an element from S and look at its inner product with some vector 7: Z s;7i . We

want the probabilty to get an even result to be approximately equal (up to €) to the
probability to get an odd result.

Definition 9.9 (Pseudorandom Distribution). Let C be a set of functions: C'= {f :
{0,1}" — {0,1}}. We want to create a distribution D over {0,1}", such that no
member of C will be able to separate between a sample from D and a sample from
the uniform distribution. Formally: D will be called e-Pseudorandom w.r.t C, if:

Vi€ CtPr{f(u) = 1] — Prif(d,) = 1]| < e

(u, is a sample taken from the uniform dist., d,, is a sample taken from D).

We shall notice that switching the 1 in the definition above into a 0 will create a
logically equal definition. With this insight, we can say that a distribution D is
pseudorandom iff:

Vi e O |E[f(un)] —E[f(dn)]] <€

Goal: given n,e we want to build an n, e biased group S C {0, 1}" which is smallest
possible. Our set S induces distrabution D because we sample uniformly at random
from the set. Namely, no linear test could distinguish between sample from U and
sample from D, where U is the distrabution which sample uniformly from {0, 1}".
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9.3.1 Remarkable results

It was proven that a tight bound on size of the set exists, but is computationally
expensive. That bound is: .
We shall now mention other remarkable results in the field of small-biased sets, in

which researchers were able to find sets of small size:

Publisher Set Size
Naor and Naor 1980 =ley
AGHP 1992 o
Amnon Ta Shma and Avi Ben Aroya (6%)3
Amnon Ta Shma E(QJ:g(l))

9.3.2 The powery construction (AGHP)

In this section we will create an e small-biased set of size @((%)2) To do so, will use
the notation [ € N, and will only commit to a value for said notation near the end of
the section.

Now - let’s build our set. Let Fy be a finite field (we’ve seen its existence in the

previous section).

Va,y € Fy define Sy, € {0,1}" 1 (Syy)i =< 2,y >
ie{l..n}
Therefore:

(Say) = (< oy > <2t y>, .., <a"y >)

Our set shall be: S = {S,,|z,y € Fu} , and its size: |S] = m = 21° = 22

In the previous definition, we have used the <,> notation - the inner product of a
vector space. Since Fy is a field - how is this legal? Lucy for us Fy ~ F, where T} is
a vector space over Fy. This allow us to use the inner product of Fb.

As mentioned before - we would like to show that S is a small-biased set. To do
so, let’s look at the inner product of a vector Sy, E S and 0 # 7 € {0, 1}"

< Spy, T > = 2((5 y)i Ti) = 2(<x Yy > 1) = 2 <T1-aty>=< En oy >.
=1
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Let us notice that V7 € {0,1}", we can define a polynomial P, (z) = S 7, Using
i=1

this notation: < Sy, 7 > = < Pr(x),y >.

If x is a root of P.(x) then we know that < P,(z),y > = <0,y>=0. In any other case

(since 0 # 7), we have that P,(z) # 0 which means:

E [(=1)=7]=0

x’yN]FQl

From all of the above, we can understand that:

E [(-)=**7™]= E [ E [(-=1)"7)|P(z) = 0] - Pr(Pr(z) = 0)+

z,y~Fy y~Fy a~Foy

E [ E [(-)<7|Py(x) £ 0] Pr(P,(x) #0) =

yNIF2l JZNFQZ

Pr(P(x) =0)+0
In conclusion, we get that:

£ [(~)<7] = Pr(P(x) = 0) <

n
2
Z’,y’\']FQl

It is finally time to choose 1. We shall the smallest 1 possible such that: & <e.
This means that we have found S - an e small-biased set of size |S| = m = 2% =
@((i)Q), just like we wanted.
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LECTURE 10
SMALL BIAS SETS

We'll see an explicit construction of an e-biased set over k bits of size O(e%)%.

10.1 Bezout Theorem

Definition 10.1. A multivariate polynomial f € F[zy, ..., z,]| has a degree, d, defined
by:
d :=TotalDeg(f) = deg(f(x,x,...,x))

Theorem 10.2. (Bezout Theorem) For any f,g € Flx,y| and for:
I={(z,y) €F*: f(z,y) = g(x,y) = 0}

assuming (f) + (g) = (1) (as ideals in Flz,y]):

[I| < def(f)-deg(g)

Remark. The assumption (f) + (¢g) = (1) is necessary: if we assume (f) + (g) # (1)
(generalization of GCD with ideals, meaning there’s a non-trivial polynomial that
divides both), if there’s an h s.t f = h-a and g = h-b, then f and g share all the
zeros of h. For example in the case h(z,y) = > + y? — 1, it implies |I| = oo because
h has infinite zeros.

Example 10.3. Given a parabola g = y — 2% and a circle f = 2% + y? — 1, by Bezout
theorem |I| < 4. There might be 4 or 2 intersections.

10.2 Ben-Aroya, Ta-Shma Construction

10.2.1 The construction

Definition 10.4. (Hermitian Curve) Let p = 2! and ¢ := p? for some [ € N. Con-
sider the equality y? +y = aP*! over F, = F,2. The Hermetian Curve is defined
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as:
H = {(z,y) €Fg:y" +y—a"" =0}

Given p, q,l, H as defined above, construct S as follows
S ={s(z,y,2): (v,y) € H,z € F,}
where s(z,y,2)i; = (2°, 47, 2).

We choose indices i,j so there are n entries in the vector s(x,y,z): i = 1,...,r and
jg=1,...,% Soi,je{(i,j):i+j<V2n}.

10.2.2 Analyzing the Construction

Remark. We'll show that V7 € {0,1}"\ {0}, |E[(=1)#7]| < e. Last lecture we've
defined (s,7) = 31" (2%, y)7; and showed that for p,(z) = > | iz’ the term equals
to (p-(2),9)-

We’d like to show that:

| B [(-1)EEvDI) = K [(_1)Zi+jgm8($7y73)ijﬂ'j]| <e
(z.y)~H (z.y)~H
z~Fq z~Fq

As in the last construction, we’ll notice we can include 7;; in the product:

Y A= Y (mpdy ) =( ) meatyz) = (), 2)

i+j<v2n i+i<V2n i+j<v2n

Where f,(2,y) = >, i< an Tij - @'y’ . Hence we have:

E [(_1)Zi+j§\/ﬁs(x»yzz)ij7—ij] — E [(_1)<f7($7y)7z>]
(z,y)~H (zy)~H
z~Fg 2~

Notice that we transfered a "combinatorial game" to a "polynomials game". The

question we’re asking is, how many zeros f,(x,y) has in H? Specifically, we're in-
# roots of fr in H

terested in the ratio between this number and the size of H, meaning ]

(recall we take the expectation over samples (z,y) € H).
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Remark. If f;(x,y) # 0, by choosing z € F, randomly the expectation is 0:

E [(—1)Y@92] =0

2~y

Hence, we only care about roots of f, in H.

Notice that deg(f) - deg(H) < v2n - (p + 1) = O(py/n). By Bezout Theorem, this
implies the number of f, roots in H is bounded by O(py/n) (we’ll prove the condition
(f) + (H) = (1) later). It is left to show that |H| is big enough.

Claim 5. |H| = p?® = pq
Claim 6. The polynomial H(z,y) = y* +y — 2P is irreducible as an element of
Fq [.I’, y] :

Corollary 10.7. Given the claims, it follows that (f.) + (H) = (1).

Proof. Choose [ = logn, then deg(H) = n+1 (recall that p = 2'), and H is irreducible.
Assuming towards contradiction that (f;) + (H) # (1), there is some polynomial
h € Flz,y] s.t. h|f. and h|H; as H is irreducible and & is non-trivial we must have
h = H, which implies that H|f.. Then deg(H) = n + 1 > v/2n > deg(F,) in
contradiction. O

Therefore, by Bezout theorem we get the bound:

#rootsofffinH<p\/ﬁ_@

[E[(—~1)Fer2 7] =

] I
Remark. Tt is enough to choose [ s.t p = 2! >> /n.

We get € = *If—f and so p* = %. Notice that

S| = [H] - |Fy| =p* p* =p’

With e above we get
8] = (n/e)}
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10.2.3 Missing Proofs

Proof. (Claim 1) It is enough to show that y? +y — 2P = 0 has exactly pq solutions.
Denote f(y) = y? +y and H the hermetian curve as before.

Consider f as a transformation f : F, — F,, then Im(f) CF, C F,.
Explanation: plug-in y” + y in 2P — z. If the result is 0, it implies that y* +y € F,
(the roots of 27 — z are in F,,). We have that

2
W+y) =W +y) =y +y" -y —y=y' —y=0

Where the first equality follows from the fact that p = 2! over a field with CharF = 2.
The second follows from the fact that p* = ¢, and the third follows from y € F,.
Meaning, y* +y € F, for any y € F,, hence Im(f) C F,. Similarly, if z € F, then
Pt e F:

2
(xp+1)p _ xp+1 =P . P — xp+1 = 9. P _ xp+1 =P — xp+1 =0

For x = 0 and y € IF,;:

P =0=20y=yt+ty=y"+y
Meaning,

{0} xF, ={(0,y) :yeF,} CH
We'll notice that ¥ +y = 0 is a F,-linear function.

Definition 10.8. We'll say that a function f : IFI% — IF]% is a F,-linear function if
Vz,y € F2 and Va,b € F,:

flax +by) = af(x) +bf(y)

It’s not hard to show that f(t) = t* + ¢ is indeed F,-linear function. That is because
y — y and y — y? are a [F)-linear functions and their sum is IF,-linear too. Meaning
y — y” +y is a linear function above F, so that the solutions space dimension is one
less than the vector space F,; meaning p*~! = p.

We must show that Vz € F, the equation y + y? = 2P has p solutions and for that
we’ll use a 'trick’.

y+yP €F, for all y € F,. If there’s a solution y? + y = aP*! for a constant = € F,
there are exactly p solutions since y? + y is linear.
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There are p? possible solutions for y? + y (since there are p* solutions for choosing y).
We get every result exactly p times. Therefore, for every a € F,, there are exactly p
points y € F, such that y* + y = a. For every x € F, it holds that 2#*! € F, and
therefore every x € F, there are exactly p elements y € F, such that H(z,y) = 0,
meaning;:

|H| =pg=p’

For the proof of claim 2 we’ll need to use Eisenstein criterion.

Theorem 10.9. (Eisenstein criterion)

Let there be R an integral domain and f(z) € R[z]. Denote f(z) = ,a;z" and
assume that there exists a prime ideal P C R such that:

1. ag,...,a,_1 € P
2. a, ¢ P

3. ap ¢ P? (where P? = {377 (pop1; : Poj,P1; € P,n € N})
Under these assumptions, f is irreducible in R[z].

Proof. (Eisenstein criterion’s, from Wikipedia)

We'll assume f is reducible, i.e. f(z) = b(z)c(x) for some non-trivial b(x) = Y ;_, ba’,

co(z) =3y’

It’s clear that ag = bycy € P\P? and therefore it cannot be that both of by, cq are in
P.

If by, co ¢ P since P is prime ag = bycy ¢ P in contradiction that multiplication of
elements in P gives an element in P.
So only one of by,cq is in P. WLOG assume that by € P and ¢q ¢ P. We'll notice
that:

a1 = bycy + bicg = bicg = ay — bgcy € P

(bo, a1 € P) If by ¢ P then bycy € P for ¢o,b; ¢ P - in contradiction to the primness
of P, so b, € P.
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Inductively, assuming deg(c) > 1, assume by, by,....bp_1 € Pfor k <r <n (r <n
because deg(c) > 1). As k <mn, a;, € P and:

k
a, = bocy, + bicp_1+ ... + bycg = Z bcp_; € P
1=0

where ¢; = 0 if 7 > s. Particularly:

k—1

byco = ai, — Zbick_i e P

1=0

because ag, by, by, ...,bp_1 € P. Ascy & P, if b, ¢ P we contradict P’s primality again.
Thus, by, by, ..., b, € P by induction.

But then we get a contradiction: b.c,_, = a, but a, ¢ P and b,c,_, € P!

Therefore f is irreducible.

Proof. (Claim 2)

To prove yP +y — P! is irreducible over F [z, y|, we'll show that it’s irreducible over
F,[y][x] (which is the same).

We'll set R = F,[y] and denote P = (y) < R.

Remark. P is prime. That is because F,[y]/(y) = F, and is therefore a field, so P is
a maximal ideal and therefore is also prime (because F,[y] is PID).

It holds that:
Rlz] 3 fy(x) = =" + 4P +y = a1z + ag

where a; = —1 and ap = y + y* (note that ag is an element of the ring R = F,[y]).
It’s clear that ap € P. What is P?? If a € P? = (y)? then there exist g;, h; € (y)
s.t. a = Y. gjhy; but ylg; and y|h; for every j, so y*| 3 g;h; = a, or P* C (y?).
Obviously y? € P?, so P? = (y?). Thus:

Loay=yy'+1)eP

2. a; =a, =—1¢ P (because if —1 € P then P = R)

3. ag € P? = (y*) (because y* fy* + y)
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Therefore, f, € R|x] satisfies the Eisenstein criterion’s conditions. As such, f, is
irreducible in R[z] which immediately implies that f(z,y) is irreducible in F[z, y].

]
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LECTURE 11
RANDOMNESS MERGERS

11.1 Small-Biased Sets

11.1.1 Introduction

In the previous lectures we saw two constructions of small-biased sets:

e AGHP, which gives a small-biased set of size O (ﬁ)z

e Ben Aroya - Ta-Shma, which gives a small-biased set of size O (6%)5/ :

In this part, we will show that there exists a small-biased set of size O (6%) using
the probabilistic method. Unfortunately, the proof won’t be constructive - it will
show only the existence of such sets, without showing an explicit construction. First,
we start by explaining the general approach of the probabilistic method, and then
showing the case for small-biased sets.

11.1.2 The Probabilistic Method

If every object in a collection of objects fails to have a certain property, then the
probability that a random object chosen from the collection has that property is zero.

Similarly, showing that the probability is strictly less than 1 can be used to prove the
existence of an object that does not satisfy the prescribed properties.

For instance in our case, given a sample space of sets, the property will be "the set
is not small-biased". We will prove that the probability of a randomly selected set to
satisfy said property is strictly less than 1 - meaning there must exist a small-biased
set.

11-1



11.1.3 Existence proof for a small-biased set

Theorem 11.1 (Existence of small-biased set). There exists an e-biased set of size

O (z)-

Proof. Let €2 be the sample space consisting of all sets of size m that are subsets of
{0,1}". We will show that there exists a set S € Q that is e-biased.
Let V4, ..., Vi, € {0,1}" be uniformly randomly chosen and independent. Let

S={Vi,...,Vi,}

We allow repetitions. Fix some linear test 7 € {0,1}"\ {0}.

Denote the random variable I, = (—1)<T’V">. Notice that all Iy, ..., I,,, take values only
in {—1,4+1}, and the expected value of each I; is 0.

Thus, by Hoeffding’s inequality there exists a constant ¢ > 1 such that:

1 & :
P _ _1 <7—7‘/:L>
r| 230

If there exists a test 7 which fails our set S, then it is not small-biased. Hence, by a

> 6] < gee'm

union bound over all 2" — 1 tests, we get:

P;r S is not small biased] < P;r [37 S fails on 7] <

RS (r,Vi)
- > (-1

i=1

<> Pr [ > e] < grgem

By settingm =c¢" - % =0 (%), we can conclude:
P;r [S is not small biased set] < 1

Thus, the probability that there exists an e-biased set of size m is strictly greater than
zero. That means that there exists an e-biased set of size m = O (5%)7 as desired. [
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11.2 Mergers

11.2.1 Motivation

Consider a set of r random variables X7, ..., X, € {0,1}", each of which is an n-bit
string. Assume at least one of them is uniformly distributed, but it is not known
which one exactly. Moreover, the other random variables are considered "heavily
dependent", meaning we cannot assume anything about the correlation between them.
For instance, it might be that X, = X, X3 = 2X;, Xy = —Xj etc.

Informally speaking, our goal is to "compress" the r random variables into a single
new random variable, also distributed over {0, 1}", while preserving as much of the
uniformity as possible.

Much of the work in this field was pioneered by Zeev Dvir ??, which the current
lecture is based on.

Proposition 11.2 (Merger attempt). Given r random variables X1, ..., X, € {0,1}",
at least one of which is uniform, we would like to construct an algorithm
Merg : ({0,1}")" — {0,1}" such that Merg(Xy, ..., X,) is uniform as well.

Using terms from the field of information theory, our merger is supposed to output n
bits of entropy, given a set containing at least n bits of entropy.

Example 11.3. If it were known which of the variables is uniform, our merger would
simply use it as its output. For example, in case we knew X3 is uniform, we’'d define
our merger to be Merg(Xy,..., X,) = Xs.

The difficulty of constructing a good merger stems from the fact that we don’t know
which of the input variables is uniform, and in fact we know nothing about them
whatsoever.

Unfortunately, our goal as stated above is somewhat unrealistic -
assuming nothing about the input, we wish to perfectly preserve its randomness in
the output. We can never expect a truly uniformly random output in this settings.

To make the task at hand more feasible, we will weaken the demands:

First, we will allow ourselves to use some extra bits of randomness in the input.
Second, since we cannot expect our merger to be truly uniform, we will want to be
as close to it as possible.
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11.2.2 Close to Uniform

How can we formally define a distribution which is not uniform per se, but rather
close to it?

Definition 11.4 ((p,¢)-random). Let X € € be a random variable over a finite
sample space . X is called (p, €)-random if

VI CQst. |T|<|QF PriXeT]<e

Intuitively, the above definition says that if we try to "capture" a (p, €)-random vari-
able in a p-fraction of our sample space, we would succeed with very little probability.
This means that our random variable is pretty evenly distributed across all the sample
space, making it close to uniform.

In fact, there exists an alternative definition for a (p, €)-random variable, which further
emphasizes the resemblance to being uniformly distributed:
Notice that for a uniform random variable X € €2, it holds that

T

v cQ Pr[XET]:@

Using this characteristic, we can derive

Definition 11.5 ((p, ¢)-random #2). Let X € Q be a random variable over a finite
sample space Q. X is called (p, €)-random if
T
VI CQst. |T| < |QF |Pr[X eT]— H <€
Observation 11.6. The two definitions of (p,€)-randomness are equivalent. Indeed,
notice that while in the first definition Pr[X € T is intended to be close to 0, in the
I — Q)= Since [~ — 0 as p — 1, by adjusting

[9]
e accordingly we can freely transition between the two definitions.

second definition it is close to

Remark. The true definition of (p, €)-randomness is based on smooth min-entropy
from information theory, and will not be presented in the lecture. For our intents and
purposes, the definition given above is equivalent and more practical for construction
of such (p, €)-random variables.
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11.2.3 Definition

Now, after clarifying what it means to be "close to uniform", we can finally properly
establish what a Merger is

Definition 11.7 (Merger). A function Merg : ({0,1}")" x {0,1}¢ — {0,1}" is called
an (p, €)-merger if given a set of random variables (X, ..., X,.) distributed over {0, 1}",
at least one of which is uniform, the random variable Merg(Xy,..., X,,Y) is (p, €)-

random. The random variable Y ~ U, is uniform over d bits and independent of all
the X;’s, denoting a pure random seed.

For our algorithm to be considered a "good" merger, we wish to optimize the following

e The seed length d should be as small as possible
e p — 1, so the output distribution is close to uniform

e ¢ — 0, so the output distribution is close to uniform

11.3 Constructing a Merger

In the next part of the lecture, we will construct a randomness merger using polyno-
mials over finite fields. We will start with the private case of merging two variables,
namely r = 2 using the previous notation. Then, we will use the ideas developed in
this toy case and generalize them to merge an arbitrary number of variables.

Theorem 11.8 (Existence of Merger). For any p,e€, there exists a (p,€)-random
merger which uses a seed of length d = O(i log ™) random bits, where o =1 — p.

Proof. The proof goes by construction, which we will shortly see in details. O

While the term log “* does not bother us so much, the term i is very problematic:

Recall that a good merger aims for p — 1. So, the better our merger is, more random
bits must be invested, as é grows rapidly.

Note. Our merger operates on ({0,1}")", meaning it receives as input r n-bit strings.
As such, it needs at least logr bits to index an input string, and at least logn bits
to access said string. Thus, we cannot expect to use less then O(max{logn,logr}) =
O(logn + logr) = O(log(nr)) bits in the seed.
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11.3.1 Merging 2 random variables

Let X,Y € {0, 1}" be two random variables distributed over n-bit strings, at least one
of them is uniformly distributed. Once again, we assume nothing about the correlation
between the two variables. Additionally, let S € {0,1}¢ be our uniform independent
random seed over d bits. Given p, ¢, our goal is to build a merger Merg(X,Y,S)
which is (p, €)-random, using as small as possible seed length d.

Before we begin our construction, let’s play a bit with the input. Instead of looking
at X,Y € {0,1}" as n-bit strings, we can split them up into blocks of size b, which
will be decided at a later point in the proof. There are [ = n/b such blocks.

A block of b bits is an element of F}, which as we know is isomorphic to Fae.
Denote ¢ = 2°. Under this new perspective, we can look at X, Y as vectors in (FF,)".
As for our seed, it will be beneficial to split it into 2 parts. Meaning, we sample two
elements in the field F,, namely A, B € F,. Our seed S would now be denoted as
S = (A, B) € (F,)?, and notice that seed-length = 2b = 2logq.

Using the above notation, we define our merger as
Merg(X,Y,S) = AX + BY = (AX, + BY, ..., AX, + BY))
Need to show that Merg is (p, €)-random. Specifically

VT C (F,) s.t. |T| < |(F)'|P = ¢~ P [AX+BY €T <e

Let T' C (F,)! be such a group.

Trying to work with T proves to be quite hard, since it can be pretty much anything.
We take a different approach then, using the polynomial method:

Instead of reasoning about the set T', we will cover it with a bigger and easier to work
with group 7”. Since T" C T” it holds that

Pr[AX 4+ BY € T| < Pr[AX + BY € T'|

so it is enough to show that Pry g x y[AX + BY € T"] < e. The name of this method
comes from the fact that this new group 7" will be defined as the set of roots of a
polynomial - an entity which we are very fond of in this course.

Before continuing further, we take a short detour in our proof, to create a powerful
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tool which will help us a lot in the parts to come.

11.3.1.1 Schwartz-Zippel lemma

Remark. Recall the total degree of a polynomial is the maximal of the sums of all the
powers of the variables in one single monomial.
For example: deg(x?xqx3 + 425 — 22173) = max{7,5,2} =7

Theorem 11.9 (Schwartz-Zippel). Let f € Flzy, ..., x,] be a non-zero polynomial of
total degree d > 0 over a field F. Let S be a finite subset of F and let ry,r9, ..., 7, be
selected at random independently and uniformly from S. Then

d

Pr[f(ri,re,....rm) = 0] < m

In its essence, the Schwartz-Zippel theorem is a generalization of the fundamental
theorem of algebra for multivariable polynomials.

Proof. The proof goes by induction on n. The base case where n = 1 is derived
directly from the fundamental theorem of algebra, by which we know the polynomial
f(z) has at most deg(f) roots. This gives us the base case. Now, assume that the
theorem holds for all polynomials in n — 1 variables. We can consider f to be a
polynomial in "z; only" by rewriting it as

d
fz,.xy) = Zxﬁfz(xg, ey X))
i=0

Since f is non-zero, there is some 7 such that f; is also non-zero. We take the largest
such 4. Notice that deg(f;) < d — i, since deg(z% f;) < d.
Now, we randomly pick 7o, ..., 7, from S. By the induction hypothesis

d—1

Pr[fi(rg, ...,7’”) = 0] S ‘S|

Note that if f;(rq,...,r,) # 0, the univariate polynomial f(z1,79,...,7,) is of degree i
(and in particular, non-zero) so

Pr(f (1,72, o) = Ol fi(ras o) # 0] < E
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Denote the event f(ry,72,...,7,) = 0 by A, and the event f;(ra,...,7,) = 0 by B.
Using conditional probabilities on the event B, we have

d—1 ' d
Pr[A] = Pr[B] Pr[A|B] + Pr[B¢] Pr[A|B€] <* Pr[B] + Pr[A|B“] = |T|Z + é =13
where in (*) we used the fact that any probability is at most 1. O

Corollary 11.10 (Schwartz-Zippel for finite fields). Let f € Fy[x1,...,x,] be a non-

zero polynomial over a finite field F,. Thus, f has at most " *deg(f) roots in the
field.

Proof Sketch. Take S = F,. From Schwartz-Zippel, we know that if r,...,r, are
selected independently and uniformly in the field, then

#roots < deg(f)

q" q

Pr[f(ri,....,rm) = 0] = = #roots < " deg(f)

11.3.1.2 The polynomial method

Armed with Corollary 11.10, let’s return to showing Pra g x y[AX + BY € T] < ¢
using the polynomial method. Formulating our intentions, we would like a polynomial
Q € F [z, ..., ] with the following properties:

1. Q#0
2. Vt € T Q(t) = 0 (abbreviated as Q|r = 0)

3. @ has a low degree

Constructing such polynomial can be trivially achieved by interpolating the elements
of T. However, such technique would result in a high degree, violating the third
property. Therefore, we will show the existence of such polynomial in a different (and
much more interesting) way, using a combinatorial approach.

Lemma 11.11. Given a non-negative integer d such that:

d+1
(‘[)>\T!
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there exists a polynomial QQ € F,[z, ..., z1] of degree d with the aforementioned three
properties.

Remark. Notice that d gets larger as |T'| grows (as one would naturally expect).

Proof. Given some t = (t1,...,t;) € T, requiring Q(t) = 0 translates to solving a linear

constraint on the coefficients of (). Moreover, the number of possible monomials in ()
d+1
l

of linear constraints is |T'|, which is strictly smaller than the number of unknowns,

is at most ( ) (as the monomial is of degree d in [ variables). Since the total number

there is a nontrivial solution, yielding our desired polynomial Q). O]

11.3.1.3 Meryg is (p,¢)-random

As Q|r = 0, we can cover our original arbitrary set T with a smoother one 7", defined
as follows:

TCT ={(21,20,...,21) € )" | Q(21, ..., z) = 0}
so it’s enough to show that Pry p x y[AX + BY € T'] < e.

In our settings, at least one of X, Y is uniformly distributed, so assume w.l.o.g X ~ U,
is uniform over n bits. Denote a sample = ~ X as bad if the following holds:

Pr[AX + BY € T | X = 1 zg
In other words, a sample x ~ X is bad if it contributes a lot to our target probabil-

ity. Denote the set of all bad samples as B(X). We shall now prove a simple (yet
meaningful) lemma:

Lemma 11.12. Prypxy[AX +BY € T] > ¢ = Pr,.x[z € B(X)] > §

Proof. Using the Low of Total Probability, we can write:

e< Pr [AX+BY €T|=
ABXY

Pr[Az + BY € T |z € B(X)]- Pr[z € B(X)}+

PrlAz + BY €T |z ¢ B(X)]- Pr[v ¢ B(X)| <

< S+ Prlve B(X)

r~X

Where (%) can be simply derived from the following three (trivial) statements:
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1. PrJAz+BY € T |z € B(X)] <1

2. PrlAz + BY € T |z ¢ B(X)] <

£
2

3. Proox[r ¢ B(X)] <1

Now, assume by contradiction that our merger fails on 7', meaning

Pr [AX+BY €T]|>¢
ABXY

Using the previous lemma, we can sample a bad x ~ X, and a y from the support of
Y|X = z, such that:
Pr{Az+ By e T] >
A,B

N

That is, we sample a y which exploits the "badness" of x. Notice that now the
randomness comes only from the seed, as x,y are fixed.
Due to the fact that T C T, we may deduce:

[NRINe

Pr[Az+ By e T'] >
AB

Recall that @) is a polynomial in [ variables, of total degree d. If we plug in Az + By =
(Azy + By, ..., Ax; + By;) (where x and y are fixed), @ becomes a polynomial on
A Bel,

Denote it by R, ,(A, B) = Q(Axz + By) of total degree

deg(R;y) < deg(Q) <d
From the Schwartz-Zippel lemma, if R, , # 0,

#Roots of R, < d-q
And due to our choice of z, vy,

€

=0 >
Py[Rey (4, B) = 0] 2

N |

Thus,
- ¢* < #Roots of R,,<d-q

DO | ™
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We may pick ¢ > Q?d so that the above inequality cannot hold.
Hence R,, =0 in F,[A, B].

As Q(z) = R, (1,0) =0, we get that every bad sample of x ~ X is a root of (). By
applying the Schwartz-Zippel lemma again and using Lemma 11.12,

%-ql < #Roots of Q < d - ¢!

which implies g < %d, in contradiction to how we chose q.
Hence, () = 0, in contradiction to our construction of () as a non-zero polynomial. [

11.3.1.4 Fixing Parameters

Along the way, we gathered two requirements:

1 (41 > |T| = g0

2. q>2?d

Using the well-known fact:
d+1 d,,
> (Z

d
(7)l > q(lfa)l =d>1- q(lfa)

We shall enforce:

Fix d = 21 - ¢, The second demand implies

2d 4l o
€ €
That is,
41 41

Q=

¢“>— = q¢>(—)
€ €

So we can pick ¢ to be this threshold. Ultimately, our seed length can be bounded:

1
d=2-logq= O(—logﬁ)
a e
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11.3.2 Merging multiple random variables

We would like to generalize the last construction to the general case, where there are
more than 2 random variables. Assume now there are k£ random variables X1, ..., X},
in need of merging, at least one of which is uniform as before.

11.3.2.1 Iterative pair merging

One trivial way to construct a merger using the results of the private case of 2 variables
is the following construction:

Using an iterative process, at each stage ¢ the merger receives as input a seed S;, and
merges each pair of random variables sequentially. The number of random variables is
reduced by half after each iteration, so there are log k iterations. Although we cannot
guarantee there exists a uniform random variable after the first merging iteration, we
can ensure there is a (p, €)-random one, which is sufficient.

It is easy to see that our algorithm would use a total seed-length of O (log k [é log %] )

11.3.2.2 Curve Merger

In the two variables scenario, our merger was based on the plane spanned by X and
Y, namely AX + BY. This "hyperplane merger" would perform poorly in the case
of k variables, since it would require k seeds.

Another possibility is to look at the line between X and Y, so our merger would now
be of form (1—A)X + AY. Notice that a point on the line can be indexed by only one
parameter, which makes it generalizable: given k variables, our merger would output
points on the curve that passes through them all. Since any point on the curve can
be indexed by a single parameter, our seed length would not grow as much as before
with regards to k.

So, let’s start by building a curve that passes through each input point x1, ..., zy € Fan.
Choose some 71, ..., v € Fan distinct field elements. For each element let us build the

ci(u) = H —(u — %)

jeiklgrs 10

following polynomial:

we can see that ¢;(v;) =01if i # j and 1 if i = j.
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Look at the curve C(y) = 3%, ¢i(y) - ;. we can see that each point 1, ...,z is on
it since plugging y; will result in C(v;) = z;. Moreover, since all ¢;’s are of degree
k — 1, so is the curve.

Our merger is defined by the curve:
M(Xy, ., X5, Y) = e(Y) X,

This merger is called a "curve merger" since it uses the seed to choose a point uni-
formly on the curve passing through the input.
It is based on the work of Dvir & Wigderson 7.

Theorem 11.13 (Curve Merger). For every p = 1 — «a > 0 the curve merger is
(p, €)-random with a seed of size d = O(logk +logn) and ¢ = O(=%).

Proof. Pick ¢ = 24 such that (nk)a < q < 2(nk)a.

We will assume w.l.o.g that n = d - r (losing a small number of bits is negligible).

As before, we can view each X; as an element of (IF,)" and the seed as an element of
F,. Lete=4-q"%.
Note that € = O(-) and d = logq = O(logn + log k).

Assume by contradiction that Z = M(X;, ..., X}, Y) fails and is not (p, €)-random.
Explicitly speaking, there exists some T' C (F,)" s.t. |T| < ¢"? = 2"1=%) for which
PriZ e T] > e.

=
2

Denote s = ¢'~2. Observe that, since r < n < ¢1, we have

1

(f)?" > (q a2) > qr(lfa) > |T‘
r qZ

Next, we utilize the polynomial method to analyze our merger. As before, we will

build a non-zero polynomial ) whose group of roots includes the whole set T. To
prove such a polynomial exists, we resort to linear algebra:
The number of monomials of degree s in r variables is

()-(7 =@ =
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Looking at the requirement Q|r = 0 as a system of linear equations, we have more
degrees of freedom than constraints. Therefore we can build a non-zero polynomial
Q € Fylz, ..., 2] with degree < s such that Q(t) = 0 for every ¢ € T, simply by
solving the system of linear equations.

Our new goal is to show that ) has too many roots, which is a contradiction to its
low degree.

Assume w.l.o.g that X, is the uniform variable (the proof will be identical if another
source is uniform).

We say that x; is "bad" iff Pr[Z € T|X; = 2,] > 5.
As seen before, by an averaging argument Pr[X; is bad] >

Lemma 11.14. If x, is bad then Q(x;) = 0.

£
5

Proof. Fix some bad z;.
Since Pr[Z € T| X, = 1] > §, there are x5, ..., 3, such that

PriZ e T\ X1 =z, ..., X = x3] >

[NRNe

So the randomness comes only from the seed.

Observe the curve defined by the x;’s

k
C= { ci(u)-xi|uEIFq} ={M(xy,....,z5,u)|lu € F,}
i=1

The restriction of () to the curve is given by the univariate polynomial:

R(u) =Q <Z ci(u) - Iz>

=1

By definition of ¢;’s the curve’s degree is k — 1, so by composition deg(R) < s-(k—1).

We saw that Pr[Z € T'|X; = z1,..., X = 23] > 5, and since T in contained in the

roots of @, we deduce that R is zero on at least g-fraction of F,.

11-14



Using the inequality:

R is zero on at least 5q > s- (k — 1) points.

By the Schwartz-Zippel lemma, R has at most deg(R) < s - (k — 1) roots, which is a
contradiction - unless R is the zero polynomial. Hence, assume that R is indeed the
zero polynomial, so it is zero on all of F,.

In particular 7, is also a root, which means 0 = R(7y;) = Q(x1) as required. O

To finish the proof, lets get another contradiction using Schwartz-Zippel:

We've already proved that Pr[X; is bad] > § therefore at least $-fraction of (IF,)" are
bad, which means that the number of roots () has is at least

€ s 5
. r 2. r| _ 2 r _ o, (r=1)
92 ‘Fq‘>q |Fq|_q ¢ =59
By Schwartz-Zippel @ has at most deg(Q) - ¢"' < s-¢"! roots,

which is a contradiction!

Therefore, our initial assumption is disproved,
meaning that the curve merger M (X, ..., Xy, Y) is (p, €)-random. O
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LECTURE 12
TWO SOURCE EXTRACTORS AND UNBALANCED EXPANDERS

In this lecture, we’ll talk about expander graphs. Expander constructions have
spawned research in pure and applied mathematics, with several applications to com-
plexity theory, design of robust computer networks, and the theory of error-correcting
codes. Before we dive into the details, we’ll take a small detour and introduce a dif-
ferent topic: Two-Source Extractors.

12.1 Two Source Extractors

We would like to explore the possibility to create a method that, given two indepen-
dent non-uniform random stream-sources, "produces" a purely uniform bit of data.
Such method will be called "Two-Source Extractor". This is highly useful for many
fields which require an unbiased random source but only have biased (non-uniform)
sources. In order to define this more formally, we require the notion of min entropy
which we will define in the next section.

12.1.1 Definitions

Definition 12.1 (min-entropy k). Let X be a random variable over the sample space
{0,1}". X is said to have min-entropy k if X is uniform over some (unknown)
S C{0,1}", such that |S| = 2F

Definition 12.2 (Two-Source Extractor). A two source extractor for min-entropy k
is a function Ext:{0,1}" x {0,1}" — {0,1} s.t. for any independent X, Y random
variables with min-entropy k (each), Ext(X,Y') has a small bias, for example smaller
then 0.01.

Remark. We note that we can require the bias to be as small as O <2§> but we

simplify for our purposes.

We can also look at the definition above from a graphical point of view. We can view
Ext as amatrix A € F3 *?" such that A;; = Ext(4, 7). In this setting, the requirement
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above is translated to the fact that for any subset of cells of size bigger or equal to
2F x 2% (we note that the cells does not have to be contiguous) the bias of the values
of the cells is small. The conditions can be illustrated by the illustration bellow.

2n

LS

Small Bias —24

2n

Figure 8: An illustration of a two-source extractor. A two-source extractor can be
viewed as an 2" x 2" truth table. Our demand implies that no area of sufficient size
can not have large bias (the area doesn’t have to be contiguous).

The idea was first proposed by Benny Shor and Oded Regev. It was shown that
solving this problem could solve an open problem in graphs, proposed by Ramsey.
Among other uses for these extractors is to extract randomness from sources that
were leaked but still have some entropy in them.

12.1.2 Main Results And Constructions

We first note that it is possible to prove (though we won’t show it) that for any n € N
there exist such extractor for k = log, n + O(1). Alas, this proof is non constructive.
We note that the hardness of the problem is since the extractor only get a sample
for each of the random variables, and doesn’t have any knowledge of the underlying
distribution. We also note that any randomly sampled matrix of size 2™ x 2™ will be
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a two-source extractor, but such construction is not efficient in any way:.

We will present several constructions which where achieved during the years:

k = % 4 O(1) - In their original article Shor and Reg propose Ext(X,Y) =
(X,Y) =5, z;y; mod 2 where X,Y € F7.

k = 0.499999n - In Bourgain [2005] it was shown the first explicit two-source
extractor with ratio of less then 0.5. The construction can be described by
Ext(X,Y) = (X3 + X, Y3+ Y) where X,Y € Fy.. The proof yield from a fact
we mentioned, max (|A + A|,|A - A|) > |A|**¢ but the proof is completely out
of our scope. The proof was a breakthrough and inspired many other results.

e State of the art - The best result known to this day is for k = (logn)"s'*8'8".

e Paley Matrix - We look at finite field F, and X,Y in it. Then, if X + VY
is a square of some element in F, then Fzt(X,Y) = 1 and vice versa. This
construction is believed to uphold with & = O (logn) but no proof has been
presented.

12.2 Unbalanced Expanders

12.2.1 Introduction
Let us now return to the subject of unbalanced expanders. Let us define the notion
of an unbalanced expander graph.
Definition 12.3 (Unbalanced Expander). Given n, k,e an unbalanced expander is a
bipartite graph G = (L, R, F') such that:

1. G is left d-regular

2. |[L|=n

3. VS C L such that |S| < k it holds that [I'(S)| > (1 —¢) -d - |5].
Remark. We note that our goal will be to minimize d and |R| (as a function of n, k, €).

Also, we will denote |R| by m henceforth.
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Bellow, an illustration of the definition is presented. We note that our demand is that
even for small sets S the neighbor set I' (S) is not too small.

Figure 9: An illustration of the definition of Unbalanced Expander. We wish to ensure
that I" (S) is not too small

The motivation for this construction is to compress entropy. Consider a very large
n = |L| and a very small m = |R|. Then our construction takes a random variable
that is distributed only on |S|, and creates a new random variable that is distributed
on I'(S) (i.e. the neighbors of S in G). The first random variable has little entropy
relative to n, the size of its probability space, as |S| << n. But the new random
variable has a large entropy relative to m, the size of its probability space.

12.2.2 Proof Of Existence

We will show a proof of existence of unbalanced expanders via the probabilistic
method, with "optimal" d, m (thus, the proof is non constructive).

Theorem 12.4. Vn, k,e there exists an unbalanced expander with:

-6 (i (}))
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m=0 (c%dk)

Proof. Fix SC L, |S|=kand T C R, |T| < (1—¢)dk—1. We'll bound Pr([I'(S) C T]
and then we’ll use union bound over all S, T to conclude that the total probability
< 1. Thus there exist a graph which is a valid unbalanced expander.

In our random left d-regular graph, each edge is drawn uniformly and independently.
So we have dk edges from S and every edge has probability of %‘ to fall in T' (we
ignore repeated edges as this only reduces the probability and we want to bound it).
Hence,

Pr[[(S) C T] < (@)dk

m

Taking the sum over all S,T by a union bound we have an upper bound of

(Z> ((1 —i)dk) <¢)dk = (%)

as we have (Z) options for S and ((1_";)%) options for 7. If (%) < 1, we're done. We'll

(1)= () < (2
o= (0) (hmm) (52

To complete the proof, we would like to show that

() (2a) < ()

(1—e)d

use the inequality

and get that,

We note that it suffices to remove the (1 —¢) in 3 as it only helps the bound,

and take the k£ root of both sides,

Also, it suffices to ignore (1 — ¢) in the denominator,

< (@)
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Taking m 2 6§dk, we get

and thus

]

Remark. We note that the proof only bound the probability for groups of size exactly
k, and we need to bound it for groups of size up to k. To complete the proof we need
to sum over |S| < k, as considered above only |S| = k. To that end, we can show
with the same parameters that (*) < 4715l for a specific |S| (since we took the kth
root of the inequality, this will only add a constant factor). Summing over all |S| < k
would get us to (%) < 1 as we required

Remark. If we don’t wish to compress the entropy, i.e. we don’t require that m will
be smaller than n, we can achieve that with a constant d, where d = © (log ( ))

12.2.3 An Explicit Polynomial Based Construction

We will show the following theorem.

Theorem 12.5. For any a > 0, N, K, € > 0 there exists an explicit construction
for an unbalanced expander such that D = © ((M)l+a> and M = © (D*K'*?)

£

Remark. We first note that we will show the main ideas of the construction given in
Guruswami et al. [2006]. We therefore will be a bit informal and will not show how
to derive the parameters of the construction from the given parameters (in particular
we will not fully define ¢, h which will be described bellow). For full details one can
refer to Guruswami et al. [2006]

We look at a field of size ¢ = D, F,. We will derive below a condition for the size of
q. Each vertex v € L is associated with a polynomial f, with degree smaller then n
(we denote this by f, € Fy"[z]). Thus our left side is of size N = ¢". Our right side

will consist of vectors of size m + 1 over F,. Hence, the right side is of size M = ¢™*!.
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For every vertex v € L we associate each edge with an element z € F, such that

et = (v (& fol). £ @), £ @) )

Where b = K. This implies that our graph is left D = ¢ regular. We note that
other constraints will be derived during the construction.

It is important to clarify what does it mean to exponent a polynomial in our
context. Each f, is a polynomial of degree less then n. We note that this is a vector
space over F,. As we’ve seen before this space is isomorphic (as vector spaces) to
the field F,[z]/ (p(x)) where p(z) is some irreducible polynomial of degree n. Since
F,[z]/ (p(z)) is a field the multiplication is well defined in it. Thus, the definition of
our multiplication is to multiply the two isomorphic elements in the field and to use
this element as the result (this is similar to what was done in lecture 11).

We note here that it is enough to show that for any set 7 C R such that |T| <
(1 —e)DK — 1 then |[I7Y(T)| < K — 1 where I'"Y(T) = {v e LIl'(v) CT}. Let
there be a set T' of size |T| < (1 —e¢)DK — 1. We use the polynomial method to
construct a polynomial "wrapping" T" which will be easier to work with. We search
for a polynomial @) such that:

1. @ is not the zero polynomial
2. Qt)=0forany t €T

3. @ has a "low degree" - we require that deg, @ < (1 —¢)q = (1—¢)D (where
deg,, is the degree of polynomial in z, alone) and deg, @ = h — 1 for i =
L,....om—1

4. @ is of minimal degree in xy of the polynomial which hold the previous items

We note that the fourth item might seem a bit arbitrary at the moment but will
be crucial for the proof. We want to show that such ) does exist.

Lemma 12.6. There exist such a () with the above properties

Proof. We note that if we show a non empty set of (s that hold items 1-3, choosing
the minimal such one is always possible. Thus, we need to show that there exists a
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non empty set of () that holds items 1-3. We look at all of the polynomials of the
degree described in item 3. Since each zg is up to power (1 — €)D and each other z;
is up to power h"" we note that the dimension of that vector space is

(1—¢)Dh™ =(1—-¢)DK

Each point in T" adds a linear constraint on this space, that reduces the dimension of
the space by one. Thus, the space of polynomials that hold the items 2 and 3 is

(1—e)DK —T > 1

Thus, the space is not the zero space (its dimension is bigger then 1). Hence, there
exist a non empty set of ()s that holds item 1-3, as wanted. n

We look at a vertex v such that I'(v) C T (meaning v is a "bad" vertex, which is
constrained in 7"). This vertex is associated with f, a polynomial. Hence, for any
x € I, it holds that

(. fula). o), 27 (@) €T
Thus, by our choice of @) it holds that,

Q (. fulw), Fi@), . 17 (@) ) =0

We note that we can look at @ ((az, folx), fi(2),. .., ffmfl(:c)>) as polynomial in z.
We denote

Ry (2) = Q (2. fulw), f2(2), .. 177 ()
Thus, for any z € F, Ry, (x) = 0 for a "bad" v. Alas, it holds that,

deg Ry, < degon%—ZdegxiQ-degfv <(l—-¢)g—14+(h—-1)(n—-1m<

(I1—e)g—14+hnm< (l—¢e)g—1+qe<q
&)
Where in (1) we note that it is enough to require that ¢ > @ for it to hold. Hence,
since Ry, has g roots (the elements of the field) and degree smaller then ¢ it holds
that Rfv(l’) =0
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We now return to the fact that each of our vertices is associated with a polynomial
of degree smaller then n. As we stated above, these polynomials are elements in a
field F,[z]/ (p(x)). With this in mind we can think of @) as Q* such that,

Q"(z) € Fylz]/ (p(2))
Q*(z)=Q (ZL‘, 22 thH)

Were z is just the element of field that the natural projection assigns to x. With such
a view, we can see that f, for a "bad" v is a root of Q* since, Q* (f,) = Ry, = 0.
Hence if Q* isn’t the zero polynomial it can have at most roots as his degree,

which will give us a bound of number of "bad" vertices. We note that the degree of
Q@* holds,

deg, Q" <) deg, Q-deg, 2" = (h—1)- (14 h+h 4+ ") =
=1

Wr—1=K—1

Hence, since we showed that (Q* has at most K —1 many roots, and each "bad" vertex
is a root it holds that, [I'"1(7)| < K — 1 if Q* is not the zero polynomial. Thus all
that is left to show is that * is not the zero polynomial.

Lemma 12.7. Q* is not the zero polynomial

Proof. We look at @)

Q(Jfo,l’h...,l’m) = Z g[(CUo)iCZf LC:;,?

I=(i1,i2,...,im)

Assume in contradiction that for all I g; € (p(z)) (which implies Q* is the zero
polynomial). Thus, we can look at

Q(zo,...,Tm) = Z gl(xo)x’f S

I=(i1,i2,...,m)

It is clear that deg, Q < deg, @ and also that Q(T) = 0 since p is irreducible
(meaning it has no roots in F,) and Q = @Q (X0 - vy Tn)- A_lso, it is clear the @Q is
indeed a valid polynomial since g; € (p(x)) for any I. Since @) is a contradiction to
how we chose @ (it upholds all the conditions and has a smaller degree in z), there
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exists such an I such that f; ¢ (p(z)). We now note that for every I # I’

/
. for x; =z

x"_’il DRI x:_'? # x/[i/l DRI x‘ hi_l

Since we count in h base, and each representation in the base is unique. Hence no
other element can cancel the I such that I ¢ (p(x)) and thus, Q* is not the zero
polynomial. O

Thus, we have shown the main ideas for which the construction is based on. From
this point it remains to show that the parameters for the construction (i.e n, ¢, h, m)
from the given parameters (i.e N, K, ¢, a) and that a irreducible polynomial can be
constructed efficiently. These steps are shown in Guruswami et al. [2006]
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