Graph Drawing using the Laplacian Based on Speilamn, Chapter 3 Gil Cohen November 2, 2020 #### Overview - 1 Embedding a graph into the line - 2 One dimensional artwork - 3 Embedding a graph into the plane - 4 Two dimensional artwork - 5 Three dimensional artwork ## Embedding a graph to $\mathbb R$ Say we wish to embed a graph G to the reals. How should we go about it? Connected vertices should be close, so we can express this as minimizing $$\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{uv \in F} (\mathbf{x}(u) - \mathbf{x}(v))^2,$$ where \mathbf{x} is the embedding. #### Question What is the obvious issue with this suggestion? ## Embedding a graph to $\mathbb R$ So we normalize so that the points in \mathbf{x} are not too concentrated around any point. $$\forall p \in \mathbb{R} \quad \sum_{v \in V} (\mathbf{x}(v) - p)^2 \ge 1.$$ #### Question What can we say about p? ## Embedding a graph to \mathbb{R} So we normalize so that the points in \mathbf{x} are not too concentrated around a point. $$\forall p \in \mathbb{R} \quad \sum_{v \in V} (\mathbf{x}(v) - p)^2 \geq 1.$$ $$p = \mathbb{E}_{v} \mathbf{x}(v) = \mathbf{u}^{T} \mathbf{x}$$ where $\mathbf{u} = \frac{1}{n} \cdot \mathbf{1}$. By shifting, we may as well assume $\mathbf{u}^T \mathbf{x} = 0$. ## Embedding a graph to $\mathbb R$ Hence, we want to minimize $\mathbf{x}^T \mathbf{M} \mathbf{x}$ subject to $\mathbf{u}^T \mathbf{x} = 0$ and $\|\mathbf{x}\|_2 = 1$. #### Question Who is x? Figure: 20-vertex path graph embedded into \mathbb{R} . Figure: 20-vertex cycle graph embedded into \mathbb{R} . Figure: Depth-4 complete binary tree embedded into \mathbb{R} . # Figure: Third-dumbbell embedded into \mathbb{R} . Figure: 5-clique embedded into \mathbb{R} . Figure: Degree 2 plus symmetrization random graph embedded into \mathbb{R} . ## My modest code ``` using LinearAlgebra using Plots using Luxor function draw_on_line(M) n = size(M)[1] E = eigen(M) v2 = E.vectors[:,n-1] s = 300 @png begin for i in 1:n circle(Point(s*v2[i],0),2,:fill) end sethue("gray") setline(1) for i in 1:n for j in i:n if (M[i,i] == 1) A = Point(s*v2[i]. 0) B = Point(s*v2[j], 0) C = Point((A.x+B.x)/2,-80+rand(-40:1:40)) curve(A, C, B) strokepath() end end end end end P = clique_no_loops(10) ``` ## Drawing a graph on the plane Moving to two dimensions, we now wish to find a pair $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ that minimizes $$\sum_{uv \in E} \left\| \begin{pmatrix} \mathbf{x}(u) \\ \mathbf{y}(u) \end{pmatrix} - \begin{pmatrix} \mathbf{x}(v) \\ \mathbf{y}(v) \end{pmatrix} \right\|_{2}^{2} \tag{1}$$ subject to $\mathbf{u}^T \mathbf{x} = \mathbf{u}^T \mathbf{y} = 0$ and $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. $$(1) = \mathbf{x}^T \mathbf{L} \mathbf{x} + \mathbf{y}^T \mathbf{L} \mathbf{y}$$ #### Question What other condition you would suggest we include? This is precisely Hall's idea. ### A lower bound #### Theorem Let **L** be a Laplacian matrix. For $k \ge 1$ let $\mathbf{x}_1, \dots, \mathbf{x}_k$ be orthonormal vectors that are all orthogonal to **1**. Then, $$\sum_{i=1}^k \mathbf{x}_i^T \mathbf{L} \mathbf{x}_i \ge \sum_{i=2}^{k+1} \lambda_i.$$ Embedding a graph into the plane ## Some room for the proof MANAGEMENT SCIENCE Vol. 17, No. 3, November, 1970 Printed in U.S.A. ## AN r-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM* #### KENNETH M. HALL† State of California, Department of General Services In this paper the solution to the problem of placing n connected points (or nodes) in r-dimensional Euclidean space is given. The criterion for optimality is minimizing a weighted sum of squared distances between the points subject to quadratic constraints of the form X'X = 1, for each of the r unknown coordinate vectors. It is proved that the problem reduces to the minimization of a sum or r positive semi-definite quadratic forms which, under the quadratic constraints, reduces to the problem of finding reigenvectors of a special "disconnection" matrix. It is shown, by example, how this can serve as a basis for cluster identification. Figure: 20-cycle embedded into \mathbb{R}^2 . Figure: 20-vertex path embedded into \mathbb{R}^2 . Figure: 20-vertex star graph embedded into \mathbb{R}^2 . Figure: Depth-4 complete binary tree embedded into \mathbb{R}^2 . Figure: 20-vertex clique embedded into \mathbb{R}^2 . Figure: 20-vertex random graph (degree 2 symmetrized) embedded into \mathbb{R}^2 . Figure: 20-cycle embedded into \mathbb{R}^3 . Figure: 20-vertex path embedded into \mathbb{R}^3 . Figure: Depth-4 complete binary tree embedded into \mathbb{R}^3 . Figure: Who am I? ## My modest code ``` function draw3d(M) n = size(M)[1] E = eigen(M) v2 = E.vectors[:,n-1] v3 = E.vectors[:,n-2] v4 = E.vectors[:,n-3] Plots.scatter(v2, v3, v4, leg = false, camera = (50,20)) end draw3d(lap(cube())) ```