
Undirected s-t connectivity in deterministic logspace

Undirected s-t connectivity in deterministic

logspace

Following Vadhan, Chapter 4

Gil Cohen

December 21, 2020



Undirected s-t connectivity in deterministic logspace

Overview

1 Space-bounded computation

2 s-t connectivity

3 SL = L



Undirected s-t connectivity in deterministic logspace

Space-bounded computation

The model

We consider a Turing machine with four tapes:

Input tape (R,$): Read-only, can move left and right.

Output tape (W,!): Write-only, left to right

Randomness tape (R,!): Read-only left to right

Work tape: (RW,$), Read-write, can move left and right

Definitions and remarks

The space complexity, s, is the number of cells used in the
work tape.

n usually denotes the input length. Typically n � s.

The randomness complexity is the number of bits read from
the randomness tape.



Undirected s-t connectivity in deterministic logspace

Space-bounded computation

The model

Technicalities

Every tape has a head - a pointer to the current location on
the tape. The machine does not “remember” the head
location. If the programmer wishes to do so (and she almost
always does) then that should be done as part of the program.
In particular, the space required will be accounted for in the
space complexity.

n is typically the largest parameter (we don’t care about the
head of the randomness tape). By paying an additional
O(log n) in space, the above technicality can be ignored.

For that price, we can also maintain any constant number of
additional work tapes.

11¥

t.EE#



Undirected s-t connectivity in deterministic logspace

Space-bounded computation

BPL vs. L

A huge open problem in complexity theory: Simulate any
space s (one, or better yet, two sided error) randomized
algorithm deterministically in space O(s).

The regime s = ⌦(log n) is most interesting, and s = ⇥(log n)
is complete for that regime.

L stands for the class of all languages computable in
deterministic logarithmic space. BPL is the class of all
languages computable by a two-sided error randomized
algorithm in logarithmic space.

It is conjectured that BPL = L. The best known result due to
Saks-Zhou (from the mid 90s) gives BPL ✓ L3/2.

÷ :
" "

÷: is.
O 7 O 8 o X -

o. Nj

① (s
" )

Farrington's
theorem



Undirected s-t connectivity in deterministic logspace

Space-bounded computation

s-t connectivity

Given a graph on n vertices and two vertices s, t, decide whether
there exists a path from s to t.

Solving s-t connectivity on directed graphs in space O(log n)
would imply NL = L. Savitch’s theorem (1970) gives a
solution in space O(log2 n), hence NL ✓ L2.

Reingold (2005) solved s-t connectivity on undirected graphs,
deterministically, in logarithmic space, proving SL = L.

Approximating the probability a random walk on directed
graphs starting at s reaches t to within a constant additive
error in deterministic logarithmic space would imply BPL = L.



Undirected s-t connectivity in deterministic logspace

SL = L

Overview

1 Space-bounded computation

2 s-t connectivity

3 SL = L



Undirected s-t connectivity in deterministic logspace

SL = L

Reingold’s idea

Observe that the problem is easy if G happens to be a
constant degree �-spectral expander with � > 0 constant.
Indeed, the diameter of G is then logarithmic. Hence, a
simple search will do.

Transform the given graph G to a constant degree expander
G 0, while respecting connectivity, and use the above on G 0.

To obtain G 0 we repeatedly apply squaring (to improve
expansion) and the Zig-Zag product (to reduce degree).

¥0



Undirected s-t connectivity in deterministic logspace

SL = L

The algorithm

Input. An undirected graph G on n vertices, and two vertices s, t.
Ingredient. H a d-regular 3

4 -spectral expander on d4 vertices with
self loops on every vertex.

1 Reduce (G , s, t) to a graph (G0, s0, t0) which is d2-regular
such that every connected component is nonbipartite.
Moreover, s, t a are connected in G if and only if s0, t0 are
connected in G0.

2 For k = 1, . . . , ` = O(log n),
1 Let Gk = G 2

k�1�z H
2 Set sk , tk to be any two vertices in the clouds of Gk

corresponding to sk�1, tk�1.

3 Exhaustively search all paths of length O(log n) in G` from s`
and accept if one of them reach t`.



Undirected s-t connectivity in deterministic logspace

SL = L

Correctness

Let Ck denote the connected component of Gk containing sk .
Observe that Ck = C 2

k�1
�z H.

C0 being connected, undirected and nonbipartite implies that
�(C0) � 1

poly(n) . Now,

�(C 2
k�1) � 2�(Ck�1)� �(Ck�1)

2,

and so
�(Ck) = �(C 2

k�1�z H)

�
✓
3

4

◆2 �
2�(Ck�1)� �(Ck�1)

2
�

� min

✓
35

32
· �(Ck�1),

1

18

◆
.

f-o (logs )

⇒
reek ,f



Undirected s-t connectivity in deterministic logspace

SL = L

Space analysis

The space analysis is delicate. We want to show that computing
⇡Gk can be done in space that is only a constant larger than the
space required for computing ⇡Gk�1 .

When analyzing constant space computation (or sub logarithmic
space) the statement is model dependent, and so we next specify
the exact model.

The end result is not model dependent as it is about logarithmic
space.



Undirected s-t connectivity in deterministic logspace

SL = L

Space analysis

$ $

$ *

I
$

$ $

$ *

$



Undirected s-t connectivity in deterministic logspace

SL = L

Space analysis

Denote by space(G ) the amount of space required on the third
tape for evaluating ⇡G .

Claim

If H is a graph of constant size then

space(G 2) = space(G ) + O(1)

space(G �z H) = space(G ) + O(1).



Undirected s-t connectivity in deterministic logspace

SL = L

Extra space for the proof

"- taek .

i
"

o

¥
tIEsT



Undirected s-t connectivity in deterministic logspace

SL = L

Extra space for the proof

Hilda, bit

"

se
*
Fb1

⇒


