

Thesis for the degree

Doctor of Philosophy

By

Gil Cohen

Advisor: Ran Raz

April 2015

Submitted to the Scientific Council of the
Weizmann Institute of Science

Rehovot, Israel

אקראיים -של עצמים פסאודו ושימושים חדשותבניות
New Constructions and Applications of Pseudorandom Objects

 עבודת גמר)תזה(לתואר

 דוקטור לפילוסופיה

 מאת

 גיל כהן

 ניסן תשע"ה

למועצה המדעית של תמוגש
 מכון ויצמן למדע
 רחובות, ישראל

רן רז :המנח

Dedicated to Orit and Yahli

Abstract

Pseudorandomness is the subfield of theoretical computer science which studies explicit
constructions of objects that share desired properties with random objects. Results and
techniques from pseudorandomness have found applications in many research fields, such
as privacy, cryptography, coding theory, and data structures.

In this thesis we study pseudorandomness from both ends. First, we give several novel
constructions of pseudorandom objects, such as three-source extractors, non-malleable
extractors and pseudorandom generators for low-degree polynomials. Second, we apply
known and original results from the field for solving fundamental problems in other
research areas, such as secure multiparty computation, privacy amplification, and circuit
lower bounds. In some cases, a priori, the connection to pseudorandomness is unclear.

Acknowledgements

Towards the end of my undergraduate studies at the Technion, I was participating in
a reading group on Ran Raz’s parallel repetition theorem. In the midst of the proof, I
recall wondering how would it be like to work with a person that is able to produce such
a tour de force result? Luckily for me, this is one open problem solved! Having Ran as
my advisor was a priceless opportunity for me to learn how truly great research is done.
Over the years, I learned from Ran (sometimes in the hard way) never to forget asking
myself which problems are worthy of attack; the realization that it is not about finding
a solution but about finding the right solution; and the evasive equilibrium between
limitless technical strength and a single pinpointed razor-sharp observation. I am certain
that having Ran as my advisor made me a better researcher than I would have ever been
otherwise. I wish to thank Ran for his faith in me, for giving me the freedom and courage
to pave my own research path, for the enlightening and enjoyable discussions we had over
the years, either at Weizmann or at IAS (well, at “small world coffee” to be precise), and
most of all for his friendship and genuine care.

I would like to thank Oded Goldreich, Robert Krauthgamer and Adi Shamir for
serving as my PhD committee, and for their advice during the past few years.

In the last couple of years I had the privilege to work with Amnon Ta-Shma – my
algebraic geometry codes mentor. Learning the subject from Amnon at first hand and
working together on fascinating problems in the field were extremely enjoyable and chal-
lenging.

During graduate school, I had an enjoyable and fruitful internship as an intern at MSR
Silicon Valley, hosted by Guy Rothblum. I wish to thank Guy for his warm hospitality
and guidance and for many insightful discussions. During the internship we had many
interesting discussions with Raghu Meka and Omer Reingold for whom I wish to thank.

I had the fortune to work with many gifted researchers and it was interesting to
see again and again how each great mind is great in its own unique way. Some of the
collaborations ended up in a nicely wrapped paper, but for me this is merely a nice bonus.
Special thanks to Noga Alon, Avraham Ben-Aroya, Itai Benjamini, Anat Ganor, Yuval
Ishai, Raghu Meka, Ran Raz, Omer Reingold, Ron D. Rothblum, Guy Rothblum, Gil
Segev, Igor Shinkar, Avishay Tal, and Amnon Ta-Shma for sharing their knowledge and
wisdom with me.

I wish to thank the theory group at Weizmann for setting a great research atmosphere.
In particular, I am thankful to Irit Dinur, Oded Goldreich and Shafi Goldwasser, which
had a strong affect, even if indirect, on my work.

At least a dozen of promising yet failed ideas separate between each pair of fruitful
research ideas, and these dozen failures can be very discouraging. In such times, especially,
which have accumulated to a 1 − o(1) fraction of my graduate studies, I am grateful to

have a wonderful wife and son that keep me on track thanks to their love and faith in me.
I cannot thank Orit and Yahli enough for their understanding of my attitude towards
research – it is a common theme that at a festive family dinner, I wonder off thinking
about the current problem which I am taken by. When I “return”, there is always a nice
dessert on the plate and beautiful smiles on their faces

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Results Not Included in This Thesis . 6
1.3 Organization . 8
1.4 Papers On Which This Thesis is Based On 8

2 Basic Definitions and Results from Pseudorandomness 11
2.1 Basic Notions in Probability . 11
2.2 Basic Lemmata in Probability . 13
2.3 Extractors . 14
2.4 Small-Bias Sets . 15
2.5 Unbalanced Expander Graphs . 15

3 Non-Malleable Extractors with Short Seeds and Applications to Privacy
Amplification 17
3.1 Non-Malleable Extractors and Privacy Amplification 17
3.2 Our Contribution . 20
3.3 Overview of the Construction . 22
3.4 Privacy Amplification Protocols Preliminaries 25
3.5 A Central Lemma from [Raz05] . 28
3.6 A Simple Lemma about Graphs . 30
3.7 A Conditional Parity Lemma . 31
3.8 Proof of Main Theorem . 34
3.9 The Privacy Amplification Protocol . 39

4 Local Correlation Breakers and Applications to Multi-Source Extrac-
tors and Mergers 45
4.1 Local Correlation Breakers . 45
4.2 Applications of LCBs . 47
4.3 (L,R)-Histories . 51
4.4 Two-Steps Look-Ahead Extractors . 54
4.5 Proof of Lemma 4.8 . 55
4.6 A Warm Up – Merging Three Rows . 59

4.7 Local Correlation Breakers . 68
4.8 Mergers with Weak-Seeds . 81
4.9 Three-Source Extractors with a Double-Logarithmic Entropy Source . . . 84
4.10 Two-Source Non-Malleable Extractors 87

5 Zero-Fixing Extractors for Sub-Logarithmic Entropy 91
5.1 Bit-Fixing Sources . 91
5.2 Our Contribution . 93
5.3 Proofs Overview . 94
5.4 An Impossibility Result . 98
5.5 Explicit Zero-Fixing Extractors for Double Logarithmic Entropy 100
5.6 Bit-Fixing Extractors for Double-Logarithmic Entropy 106

6 Efficient Multiparty Protocols via Log-Depth Threshold Formulae 111
6.1 Secure Multiparty Computation . 111
6.2 Our Approach . 112
6.3 Threshold Formulae from Threshold Gates 116
6.4 Our Results . 117
6.5 Proof Overview of Complexity-Theoretic Results 122
6.6 Preliminaries for the Complexity Theoretic Results 124
6.7 Threshold Formulae from Threshold Gates 126
6.8 Majority Formulae from Majority Gates 132
6.9 From Threshold Formulae to Broadcast 137
6.10 The Multiparty Computation Framework 142
6.11 From Threshold Formulae to Secure Multiparty Computation 147
6.12 Secure MPC over Blackbox Rings . 150
6.13 Secure MPC over Groups . 155

7 On Rigid Matrices and U-Polynomials 167
7.1 Matrix Rigidity . 167
7.2 Our Contribution . 168
7.3 U -Polynomials . 171
7.4 Small-Bias Sets as Rigid Sets . 175
7.5 Rigid Sets from Unbalanced Expanders 180
7.6 From General Dimension k to Dimension n/2 184

8 Gradual small-bias sample spaces 187
8.1 Introduction . 187
8.2 Previous Results Used By the Construction 189
8.3 The Construction . 190
8.4 Non-Linear Bias Decay . 192

Bibliography 195

Chapter 1

Introduction

In combinatorics, and to some extent in mathematics in general, one often wishes to
prove the existence of an object with some desired properties. It is usually preferred
to have some explicit description of such an object, if it exists. A classical, perhaps
pre-computational, interpretation of the word “explicit” is one in which the object is
described using a succinct mathematical formula.

In his three pages seminal paper, Erdös [Erd47] lays down one of the first, and certainly
most influential example of the probabilistic method. This method enables one to prove
the existence of an object by probabilistic arguments. The outcome is a deterministic
no-error proof for the existence of the object, even though the argument itself is partially
based on a probabilistic reasoning. The strength of the probabilistic method usually lies
in its simplicity, yet the method comes with an inherent cost – although the existence of
the desired object is proven, one usually gains almost no information about how such an
object might look like, and certainly an explicit description cannot be extracted.

Explicitness got a new meaning in the computational era. While, classically, only a
succinct mathematical formula was considered to be an explicit description, computer
science suggests a more relaxed, and arguably more natural interpretation. An object is
explicit if one can construct that object from scratch using a small amount of resources,
where the central resource is, as always in life, time. To be a bit more focused, an explicit
construction of an object is an efficient deterministic algorithm that produces this object.

Pseudorandomness is the subfield of theoretical computer science which studies ex-
plicit constructions, in the computational interpretation discussed above, of objects with
properties that are shared by random objects. That is, roughly speaking, in pseudo-
randomness one wants to design efficient deterministic algorithms that produce desired
objects, which are guaranteed to exist by the probabilistic method. This can also be
interpreted as understanding the role of randomness in computation, as in most cases,
the probabilistic method gives an efficient randomized algorithm for the construction of
desired objects. Pseudorandomness has found applications in many research fields, such
as computation complexity, privacy, cryptography, coding theory and data structures.

This thesis covers works that were done during the graduate studies of the author.
Each of these works either presents a novel construction of a pseudorandom object (that

1

1. INTRODUCTION

is, a contribution to the field of pseudorandomness) or otherwise gives an application of
results and techniques from pseuodrandomness to other fields. In the next section we
give a brief account to each of these works.

1.1 Our Results

In this section we briefly review for the main results that are included in this thesis.

1.1.1 Non-malleable extractors and applications to privacy am-
plification protocols

Non-malleable extractors were introduced by Dodis and Wichs [DW09], motivated by the
classical problem of privacy amplification. Informally speaking, a non-malleable extractor
is a seeded extractor with a very strong pseudorandom property – the output of a non-
malleable extractor obtained using a typical seed does not reveal information about the
output that one would get using any different seed. In [DW09] it is shown how to
simplify and significantly improve upon a long line of research on privacy amplification
using a non-malleable extractor, though the construction of the latter was left as an open
problem.

In joint work with Raz and Segev [CRS14] we give the first unconditional construction
of a non-malleable extractor that outputs more than a logarithmic number of output
bits, as required by privacy amplification protocols. Prior to this work, the only known
construction [DLWZ11a] was based on a long standing conjecture on prime numbers in
order to achieve this result. Moreover, unlike the work of [DLWZ11a], that required a seed
of linear length, our extractor uses a seed of logarithmic length. This in turn significantly
improves the communication complexity of the privacy amplification protocol. Chapter 3
covers this work.

1.1.2 Local correlation breakers and applications to multi-source
extractors and mergers

In Chapter 4, which covers the paper [Coh15], we introduce and construct a pseudoran-
dom object that we call a local correlation breaker (LCB). Informally speaking, an LCB
is a function that gets as input a sequence of r (arbitrarily correlated) random variables
and an independent weak-source. The output of the LCB is a sequence of r random
variables with the following property. If the ith input random variable is uniform then
the ith output variable is uniform even given a bounded number of any other output
variables. That is, an LCB uses the weak-source to “break” local correlations between
random variables. Using our construction of LCBs, we obtain several new and improved
constructions of certain pseudorandom objects which we now briefly describe.

• We construct a three-source extractor where one of the sources is only assumed
to have a double-logarithmic entropy. More precisely, for any integer n and con-

2

1.1 Our Results

stant δ > 0, we construct a three-source extractor for entropies δn, O(log n) and
O(log log n). This result improves the three-source extractor of Raz [Raz05] and
is incomparable with the recent three-source extractor by Li [Li15]. As the third
source is required to have tantalizingly low entropy, we hope that further ideas
can be used to eliminate the need for this source altogether, solving a major open
problem.

• We construct a merger with weak-seeds that merges r random variables using an
independent (n, k)-weak-source with k = Õ(r) · log log n. A previous construction,
that appears in the celebrated paper by Barak et al. [BRSW12], assumes k ≥
Ω(r2) + polylog(n).

• We introduce the notion of a two-source non-malleable extractor. This is a relaxation
of a non-malleable extractor, discussed in Chapter 3, where two weak-sources, rather
than one, are given. We construct a two-source non-malleable extractor for entropy
O(log2 n) with a logarithmic seed length. This should be compared with “standard”
non-malleable extractors for which the known explicit constructions require entropy
roughly n/2.

1.1.3 Zero-fixing extractors for sub-logarithmic entropy

An (n, k)-bit-fixing source [Vaz85, CGH+85, BBR85] is a distribution on n bit strings,
that is fixed on n − k of the coordinates, and jointly uniform on the remaining k bits.
Explicit constructions of bit-fixing extractors by Gabizon, Raz and Shaltiel [GRS06]
and Rao [Rao09b], extract (1 − o(1)) · k bits for k = polylog(n), almost matching the
probabilistic argument. Intriguingly, unlike other well-studied sources of randomness, a
result of Kamp and Zuckerman [KZ06] shows that, for any k, some small portion of the
entropy in an (n, k)-bit-fixing source can be extracted. Although the extractor does not
extract all the entropy, it does extract 0.5 log k bits.

In a joint work with Igor Shinkar [CS15], covered in Chapter 5, we prove that when
the entropy k is small enough compared to n, this exponential entropy-loss is unavoid-
able. More precisely, one cannot extract more than 0.5 log(k) + O(1) bits from (n, k)-
bit-fixing sources. The remaining entropy is inaccessible, information theoretically. By
the Kamp-Zuckerman construction, this negative result is tight. For small enough k,
this strengthens a result by Reshef and Vadhan [RV13], who proved a similar bound for
extractors computable by space-bounded streaming algorithms.

Our impossibility result also holds for what we call zero-fixing sources. These are
bit-fixing sources where the fixed bits are set to 0. We partially complement our negative
result, by giving an explicit construction of an (n, k)-zero-fixing extractor, that outputs
Ω(k) bits, even for k = poly log log n.

Finally, we give a construction of an (n, k)-bit-fixing extractor, that outputs k−O(1)
bits, for entropy k = (1 + o(1)) · log log n, with running-time nO((log logn)2). This answers
an open problem by Reshef and Vadhan [RV13].

3

1. INTRODUCTION

1.1.4 Efficient multiparty protocols via log-depth threshold for-
mulae

Secure multiparty computation (MPC) enables a set of parties to accomplish distributed
computational tasks, while maintaining the secrecy of the inputs and the correctness
of the outputs in the presence of coalitions of dishonest parties. Originated from the
seminal works of [Yao82a, GMW87, BGW88, CCD88], secure MPC is a classical problem
in cryptography that has been the subject of an enormous body of work. Nevertheless,
MPC protocols remained quite complicated and their security was difficult to prove. In
Chapter 6, based on a joint work with Damg̊ard et al. [CDI+13], we propose a new
modular approach for the construction of MPC protocols. Using our approach we obtain
conceptually simple proofs for known classical results in cryptography [BGW88, CCD88]
and in distributed computing [PSL80, Dol82], and resolve several open problems.

Our approach is to reduce the problem of constructing MPC protocols for n players to
constructing MPC protocols for just a constant number of players – a significantly easier
task. To this end, we rely on a seemingly unrelated object from complexity theory – a log-
depth formula, composed of constant fan-in threshold gates, that computes a threshold
function. We use techniques and results from pseudorandomness, such as expander graphs
and pseudorandom generators for read-once branching programs, to give deterministic
constructions of such formulas.

The new approach we put forward for the design of efficient MPC protocols is as
follows:

1. Design a protocol π for a small number of parties (say, 3 or 4) which achieves security
against a single corrupted party. Such protocols are typically easy to construct, as
they may employ techniques that do not scale well with the number of corrupted
parties.

2. Recursively compose π with itself to obtain an efficient n-party protocol which
achieves security against a constant fraction of corrupted parties.

The second step of our approach combines the “player emulation” technique of Hirt
and Maurer [HM00] with constructions of logarithmic-depth formulae which compute
threshold functions using only constant fan-in threshold gates. Using this approach, we
simplify and improve on previous results in cryptography and distributed computing. In
particular:

• We provide conceptually simple constructions of efficient protocols for Secure MPC
in the presence of an honest majority, as well as broadcast protocols from point-to-
point channels and a 2-cast primitive.

• We obtain new results on MPC over blackbox groups and other algebraic structures.

The above results rely on the following complexity-theoretic contributions, which we
believe is of independent interest:

4

1.1 Our Results

• We show that for every j, k ∈ N such that m , k−1
j−1

is an integer, there is an

explicit (poly(n)-time) construction of a logarithmic-depth formula which computes
a good approximation of an (n/m)-out-of-n threshold function using only j-out-of-k
threshold gates and no constants.

• For the special case of n-bit majority from 3-bit majority gates, a non-explicit con-
struction follows from the work of Valiant [Val77]. For this special case, we provide
an explicit construction with a better approximation than for the general threshold
case, and also an exact explicit construction based on standard complexity-theoretic
or cryptographic assumptions.

1.1.5 On rigid matrices and U-polynomials

In a joint work with Alon [AC13], covered in Chapter 7, we introduce a class of polyno-
mials, which we call U-polynomials and show that the problem of explicitly constructing
a rigid matrix can be reduced to the problem of explicitly constructing a small hitting set
for this class. We prove that small-bias sets are hitting sets for the class of U -polynomials,
though their size is larger than desired. Furthermore, we give two alternative proofs for
the fact that small-bias sets induce rigid matrices.

Further, we construct rigid matrices from unbalanced expanders, with essentially the
same size as the construction via small-bias sets.

1.1.6 Gradual small-bias sample spaces

A (k, ε)-biased sample space is a distribution over {0, 1}n that ε-fools every nonempty
linear test of size at most k. Since they were introduced by Naor and Naor [NN93], these
sample spaces have become a central notion in theoretical computer science with a variety
of applications. When constructing such spaces, one usually attempts to minimize the
seed length as a function of n, k and ε. Given such a construction, if we reverse the roles
and consider a fixed seed length, then the smaller we pick k, the better the bound on the
bias ε becomes. However, once the space is constructed we have a single bound on the
bias of all tests of size at most k.

In a joint work with Ben-Aroya [BAC12], covered in Chapter 8, we initiate the study of
a new pseudorandom object, which we call a gradual (k, ε)-biased sample space. Roughly
speaking, this is a sample space that ε-fools linear tests of size exactly k and moreover,
the bound on the bias for linear tests of size i ≤ k decays as i gets smaller. We show how
to construct gradual (k, ε)-biased sample spaces of size comparable to the (non-gradual)
spaces constructed by Alon et al. [AGHP92], and prove a lower bound on their size. Our
construction is based on the lossless expanders of Guruswami et al. [GUV09], combined
with the Quadratic Character Construction of Alon et al. [AGHP92].

5

1. INTRODUCTION

1.2 Results Not Included in This Thesis

In this section we give a brief account for results that were obtained during the author’s
graduate studies, that we chose not to include in this thesis.

1.2.1 Bi-Lipschitz bijection between the Boolean cube and the
Hamming ball

In a joint work with Benjamini and Shinkar [BCS14] we construct a bi-Lipschitz bijection
from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that
for all even n ∈ N there exists an explicit bijection ψ : {0, 1}n → {x ∈ {0, 1}n+1 : |x| > n/2}
such that for every x 6= y ∈ {0, 1}n it holds that

1

5
≤ distance(ψ(x), ψ(y))

distance(x, y)
≤ 4,

where distance(·, ·) denotes the Hamming distance. In particular, this implies that the
Hamming ball is bi-Lipschitz transitive.

This result gives a strong negative answer to an open problem of Lovett and Vi-
ola [LV12], who raised the question in the context of sampling distributions in low-level
complexity classes. The conceptual implication is that the problem of proving lower
bounds in the context of sampling distributions requires ideas beyond the sensitivity-
based structural results of Boppana [Bop97].

We study the mapping ψ further and show that it (and its inverse) are computable in
DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that ψ is “approximately
local” in the sense that all but the last output bit of ψ are essentially determined by a
single input bit.

1.2.2 Two sides of the coin problem

In the coin problem, one is given n independent flips of a coin that has bias β > 0 towards
either Head or Tail. The goal is to decide which side the coin is biased towards, with high
confidence. An optimal strategy for solving the coin problem is to apply the majority
function on the n samples. This simple strategy works as long as β > Ω(1/

√
n). However,

computing majority is an impossible task for several natural computational models, such
as bounded width read once branching programs and AC0 circuits.

Brody and Verbin [BV10] proved that a length n, width w read once branching pro-
gram cannot solve the coin problem for β < O(1/(log n)w). This result was tightened by
Steinberger [Ste13] to O(1/(log n)w−2). The coin problem in the model of AC0 cir-
cuits was first studied by Shaltiel and Viola [SV10], and later by Aaronson [Aar10]
who proved that a depth d size s Boolean circuit cannot solve the coin problem for
β < O(1/(log s)d+2).

In a joint work with Ganor and Raz [CGR14] we obtained the following results:

6

1.2 Results Not Included in This Thesis

• We strengthen Steinberger result and show that any Santha-Vazirani source with
bias β < O(1/(log n)w−2) fools length n, width w read once branching programs. In
other words, the strong independence assumption in the coin problem is completely
redundant in the model of read once branching programs, assuming the bias remains
small. That is, the exact same result holds for a much more general class of sources.

• We tighten Aaronson’s result and show that a depth d, size s Boolean circuit cannot
solve the coin problem for β < O(1/(log s)d−1). Moreover, our proof technique is
different and we believe that it is simpler and more natural.

1.2.3 Two structural results for low degree polynomials and
applications

In a joint work with Tal [CT14] we obtained two structural results concerning low de-
gree polynomials over finite fields. The first states that over any finite field F, for any
polynomial f on n variables with degree d ≤ log(n)/10, there exists a subspace of Fn
with dimension Ω(d · n1/(d−1)) on which f is constant. This result is shown to be tight.
Stated differently, a degree d polynomial cannot compute an affine disperser for dimen-
sion smaller than Ω(d · n1/(d−1)). Using a recursive argument, we obtain our second
structural result, showing that any degree d polynomial f induces a partition of Fn to
affine subspaces of dimension Ω(n1/(d−1)!), such that f is constant on each part.

We extend both structural results to more than one polynomial. We further prove
an analog of the first structural result to sparse polynomials (with no restriction on the
degree) and to functions that are close to low degree polynomials. We also consider the
algorithmic aspect of the two structural results.

Our structural results have various applications, two of which are:

• Dvir [Dvi12] introduced the notion of extractors for varieties, and gave explicit
constructions of such extractors over large fields. We show that over any finite
field any affine extractor is also an extractor for varieties with related parame-
ters. Our reduction also holds for dispersers, and we conclude that Shaltiel’s affine
disperser [Sha11] is a disperser for varieties over F2.

• Ben-Sasson and Kopparty [BSK12] proved that any degree 3 affine disperser over a
prime field is also an affine extractor with related parameters. Using our structural
results, and based on the work of Kaufman and Lovett [KL08] and Haramaty and
Shpilka [HS10], we generalize this result to any constant degree.

1.2.4 The complexity of DNF of parities

Joint with Shinkar [CS14] we study depth 3 circuits of the form OR ◦ AND ◦ XOR, or
equivalently – DNF of parities. This model was first explicitly studied by Jukna [Juk06]
who obtained a 2Ω(n) lower bound for explicit functions in this model. Several related

7

1. INTRODUCTION

models have gained attention in the last few years, such as parity decision trees, the
parity kill number and AC0 ◦ XOR circuits.

For a function f : {0, 1}n → {0, 1}, we denote by DNF⊕(f) the least integer s for
which there exists an OR ◦ AND ◦ XOR circuit, with OR gate of fan-in s, that computes
f . We summarize some of our results:

• For any affine disperser f : {0, 1}n → {0, 1} for dimension k, it holds that DNF⊕(f) ≥
2n−2k. By plugging Shaltiel’s affine disperser (FOCS’11) we obtain an explicit

2n−n
o(1)

lower bound.

• We give a non-trivial general upper bound by showing that DNF⊕(f) ≤ O(2n/n)
for any function f on n bits. This bound is shown to be tight up to an O(log n)
factor.

• We show that for any symmetric function f it holds that DNF⊕(f) ≤ 1.5n ·poly(n).
Furthermore, there exists a symmetric function f for which this bound is tight up
to a polynomial factor.

• For symmetric threshold functions we show tighter bounds. For example, we show
that the majority function has DNF⊕ complexity of 2n/2 ·poly(n). This is also tight
up to a polynomial factor.

• For the inner product function IP on n inputs we show that DNF⊕(IP) = 2n/2 − 1.
Previously, Jukna gave a lower bound of Ω(2n/4) for the DNF⊕ complexity of this
function. We further give bounds for any low degree polynomial.

• Finally, we obtain a 2n−o(n) average case lower bound for the parity decision tree
model using affine extractors.

1.3 Organization

The thesis is organized in chapters, where each chapter (with the exception of Chapter 2)
covers a published paper or a paper that is currently in submission. Hence, each chapter
may be read independently of all other chapters. In Chapter 2 we give basic definitions
and results from the field of pseudorandomness that are used throughout the thesis.

1.4 Papers On Which This Thesis is Based On

In this section we give an account for the papers on which each chapter in this thesis is
based on.

• Chapter 3 is based on a joint work with Raz and Segev, published at the SIAM
Journal on Computing [CRS14]. A preliminary version of this paper appeared in the
IEEE 27th annual conference on computational complexity (CCC 2012) [CRS12].

8

1.4 Papers On Which This Thesis is Based On

• Chapter 4 is based on a recent work [Coh15], that is to appear in the IEEE 56th
annual symposium on foundations on computer science (FOCS 2015).

• Chapter 5 is based on a joint work with Shinkar [CS15], published at the 42nd
international colloquium on automata, languages, and programming (ICALP 2015).

• Chapter 6 is based on a joint work with Damgard et al. [CDI+13], published at
advances in cryptology (CRYPTO 2013).

• Chapter 7 is based on a joint work with Alon that appeared at the IEEE 28th annual
conference on computational complexity (CCC 2013) [AC13]. A final version will
appear at the journal of computational complexity 2015.

• Chapter 8 is based on a joint work with Ben-Aroya [BAC12] that is currently under
submission.

9

10

Chapter 2

Basic Definitions and Results from
Pseudorandomness

This chapter lists formal definition and results from the literature used repeatedly through-
out the thesis. We recommend the reader to skim this chapter and return to it when a
definition in later chapters needs clarification.

We start by setting some notation that will be used throughout the thesis. The
logarithm in this thesis is always taken base 2. For every natural number n ≥ 1, define
[n] = {1, 2, . . . , n}. Throughout the thesis we almost always avoid the use of floor and
ceiling in order not to make the equations cumbersome.

2.1 Basic Notions in Probability

2.1.1 Random variables and distributions

We sometimes abuse notation and syntactically treat random variables and their dis-
tribution as equal, specifically, we denote by Um a random variable that is uniformly
distributed over {0, 1}m. Furthermore, if Um appears in a joint distribution (Um, X) then
Um is independent of X. When m is clear from context, we omit it from the subscript
and write U .

Let X, Y be two random variables. We say that Y is a deterministic function of X if
the value of X determines the value of Y . Namely, there exists a function f such that Y =
f(X). Let X, Y, Z1, . . . , Zr be random variables. We introduce the following shorthand
notation and write (X,Z1, . . . , Zr) ≈ε (Y, ·) for (X,Z1, . . . , Zr) ≈ε (Y, Z1, . . . , Zr).

2.1.2 Statistical distance

The statistical distance between two distributions X, Y on the same domain D is defined
by

SD (X, Y) = max
A⊆D
{|Pr[X ∈ A]− Pr[Y ∈ A] |} .

11

2. BASIC DEFINITIONS AND RESULTS FROM
PSEUDORANDOMNESS

If SD(X, Y) ≤ ε we write X ≈ε Y and say that X is ε-close to Y .

2.1.3 Min-entropy

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈sup(X)

log2

(
1

Pr[X = x]

)
.

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In
such case, if X has min-entropy k or more, we say that X is an (n, k)-weak-source. We
sometimes abbreviate and simply say X is an (n, k)-source.

2.1.4 Flat sources

Let X be an (n, k)-source. We say that the source X is flat if it is uniformly distributed
over a set SX ⊆ {0, 1}n of size 2k. The following lemma, proved by Chor and Goldre-
ich [CG88], shows that the distribution of any (n, k)-source is a convex combination of
distributions of flat (n, k)-sources. Hence, in most cases, it will be enough to consider
flat sources rather than general weak sources.

Lemma 2.1. The distribution of any (n, k)-source is a convex combination of distribu-
tions of flat (n, k)-sources.

2.1.5 Average conditional min-entropy

Definition 2.2. Let X,W be two random variables. The average conditional min-entropy
of X given W is defined as

H̃∞(X | W) = − log2

(
E

w∼W

[
max
x

Pr [X = x | W = w]
])

= − log2

(
E

w∼W

[
2−H∞(X|W=w)

])
.

Lemma 2.3 ([DORS08]). Let X, Y, Z be random variables such that Y has support size
at most 2`. Then,

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y) | Z)− ` ≥ H̃∞(X | Z)− `.

In particular, H̃∞(X | Y) ≥ H∞(X)− `.

Lemma 2.4 ([DORS08]). For any two random variables X, Y and any ε > 0, it holds
that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y)− log(1/ε)

]
≤ ε.

12

2.2 Basic Lemmata in Probability

Lemma 2.5 ([DORS08]). Let δ > 0 and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong
seeded extractor for entropy k, with error ε. Let X be a random variable on n bit strings,
such that H̃∞(X | Z) ≥ k + log(1/δ), where Z is some random variable. Then,

(Ext(X,S), S, Z) ≈ε+δ (Um, S, Z),

where S is uniformly distributed over {0, 1}d and is independent of the joint distribution
(X,Z).

We also need the following simple lemma.

Lemma 2.6. Let X, Y, Z be random variables such that for any y ∈ sup(Y) it holds that

(X | Y = y) and (Z | Y = y) are independent. Then, H̃∞(X | (Y, Z)) = H̃∞(X | Y). In

particular, if X and Z are independent then H̃∞(X | Z) = H∞(X).

2.2 Basic Lemmata in Probability

Throughout the thesis we make a frequent use of the following simple and well-known
lemmata.

Lemma 2.7. Let X, Y be two independent random variables on a common domain D.
Then,

SD (X, Y) =
1

2
·
∑
z∈D

∣∣ Pr [X = z]− Pr [Y = z]
∣∣.

Lemma 2.8. Let X, Y be two independent random variables on a common domain D.
Let f be a function with domain D. Then, SD (f(X), f(Y)) ≤ SD (X, Y) . Moreover,
the inequality above holds also for f which is a random function, where the internal
randomness of f is independent of (X, Y).

Lemma 2.9. For all random variables X, Y, Z, it holds that

SD ((X, Y) , (Z, Y)) = E
y∼Y

[SD ((X | Y = y), (Z | Y = y))] .

Lemma 2.10. Let X, Y, Z be random variables such that X is independent of Y and
Z is independent of Y . Then, SD ((X, Y) , (Z, Y)) = SD (X,Z) . In particular, if X is
supported on {0, 1}a then SD ((X, Y) , (Ua, Y)) = SD (X,Ua) .

Lemma 2.11. Let X, Y, Z be random variables such that for any y ∈ sup(Y), the random
variables (X | Y = y) and (Z | Y = y) are independent. Assume that X is supported on
{0, 1}a. Then,

SD ((X, Y, Z) , (Ua, Y, Z)) = SD ((X, Y) , (Ua, Y)) .

Lemma 2.12. Let X,Z be random variables on a common domain. Let Y be some
random variable. Then, SD (X,Z) ≤ SD ((X, Y) , (Z, Y)) .

13

2. BASIC DEFINITIONS AND RESULTS FROM
PSEUDORANDOMNESS

Lemma 2.13. Let X, Y be two random variables on a common domain D. Let f : D → R
be a function with non-negative range, that is, f(z) ≥ 0 for all z ∈ D. Then,∣∣∣∣ E

x∼X
[f(x)]− E

y∼Y
[f(y)]

∣∣∣∣ ≤ max
z∈D
|f(z)| · SD(X, Y).

Lemma 2.14. Let X, Y be two random variable over a common domain D. Let E ⊆ D
be an event. Then,

SD (X | E, Y | E) ≤ 1

Pr[E]
· SD (X, Y) .

Lemma 2.15 ([Li12b]). Let (X, Y) be a joint distribution. Let Z be a random vari-
able with the same range as X. Then, there exists a joint distribution (Z, Y) such that
SD ((X, Y) , (Z, Y)) = SD(X,Z).

2.3 Extractors

Definition 2.16 (Seeded-Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
(k, ε)-seeded-extractor if for every (n, k)-source W and an independent random variable
S uniformly distributed over {0, 1}d, the distribution of Ext(W,S) is ε-close to Um. A
(k, ε)-seeded-extractor is strong if for X and S as above, the distribution of (Ext(X,S), S)
is ε-close to (Um, Ud).

Throughout this thesis we make use of the following explicit constructions of strong
seeded-extractors.

Theorem 2.1 ([ILL89]). For all integers n ≥ k > m > 0 and for any ε > 0 such
that m ≤ k − 2 log(1/ε), there is an explicit construction of a strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(n).

Theorem 2.2 ([GUV09]). For every constant β > 0, for all integers n ≥ k > m > 0
such that m ≤ (1 − β)k, and for any ε > 0, there is an explicit construction of a strong
(k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log n+ log(1/ε)).

Theorem 2.3 ([GUV09]). For all integers n ≥ k > m > 0, and for any ε > 0 such that
m ≤ k − 2 log(1/ε) − O(1), there is an explicit construction of a strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = log n+O(log k · log(k/ε)).

Definition 2.17 (Multi-source extractors). A function Ext : ({0, 1}n)t → {0, 1}m is
called a t-source extractor for entropies k1, . . . , kt, with error ε, if for any t independent
n-bit weak-sources X1, . . . , Xt, where H∞(Xi) ≥ ki, it holds that Ext(X1, . . . , Xt) ≈ε Um.
For a subset I ⊆ [t], we say that Ext is strong in I if (Ext(X1, . . . , Xt), {Xi}i∈I) ≈ε (Um, ·).

Theorem 2.4 ([Li13]). For every constant µ > 0 and all integers n, k with k ≥ log2+µ n,
there exists an explicit function Li : ({0, 1}n)c → {0, 1}m, with m = Ω(k) and c = O(1/µ),
such that the following holds. If X1, . . . , Xc are independent (n, k)-weak sources, then

Li(X1, . . . , Xc) ≈ε Um,

where ε = n−Ω(1) + 2−k
Ω(1)

.

14

2.4 Small-Bias Sets

2.4 Small-Bias Sets

A random variable Z over {0, 1} is ε-biased if bias(Z) =
∣∣Pr[Z = 0]−Pr[Z = 1]

∣∣ ≤ ε, that
is, if its distribution is ε-close to uniform. A sequence of 0-1 random variables Z1, . . . , ZN
is ε-biased for linear tests of size k if the exclusive-or of any nonempty set of cardinality
at most k of these variables is ε-biased, that is, for any nonempty τ ⊆ [N], such that
|τ | ≤ k, the random variable Zτ =

⊕
i∈τ Zi is ε-biased. We say in this case, that the

sequence Z1, . . . , ZN ε-fools linear tests of size k.
Explicit constructions of small probability spaces on N random variables that are

ε-biased for linear tests of size k were given in [NN93, AGHP92, ABN+92, BT09]. In
particular, [AGHP92] showed that for every k, N ≥ 2, variables Z1, . . . , ZN as above can
be explicitly constructed using 2 · dlog(1/ε) + log k + log logNe random bits.

2.5 Unbalanced Expander Graphs

In this section we give the definition and basic facts about unbalanced expander graphs.
For more information we refer the reader to [HLW06]. Let G = (L,R,E) be a bipartite
graph with |L| = m, |R| = n, and left-degree d. For a set S ⊆ L define

Γ(S) = {r ∈ R : ∃s ∈ S such that sr ∈ E},

and
Γ1(S) = {r ∈ R : ∃!s ∈ S such that sr ∈ E}.

G is called (kmax, 1− ε)-bipartite-expander if for every S ⊆ L with size at most kmax,
it holds that |Γ(S)| ≥ (1 − ε)d|S|. G is called (kmax, 1 − ε)-unique neighbor expander if
for every S ⊆ L with size at most kmax it holds that |Γ1(S)| ≥ (1− ε)d|S|. The following
simple well-known fact relates the two definitions.

Fact 2.18. Every (kmax, 1 − ε)-bipartite expander is a (kmax, 1 − 2ε)-unique neighbor
expander.

We will be interested in the case where m = ω(n). Such bipartite expanders are called
unbalanced expanders. The following fact shows that given any plausible n, d, kmax ∈ N
and ε ∈ (0, 1), there exist highly unbalanced expanders, that is, (kmax, 1 − ε)-bipartite
expanders with large m.

Fact 2.19. Let n, d ∈ N, and let 1
d
< ε < 1. For any kmax ≤ e−2/ε · n

d
there exists a

(kmax, 1− ε)-bipartite expander with m = Ω(kmax · ed).

In particular, for constant ε, 7.12 implies that for large enough n, d, there exist
(kmax, 1− ε)-bipartite expanders with kmax = Ω(n

d
), and m = Ω(n

d
· ed).

15

16

Chapter 3

Non-Malleable Extractors with
Short Seeds and Applications to
Privacy Amplification

3.1 Non-Malleable Extractors and Privacy Amplifi-

cation

Among the wide variety of settings in which randomness extractors play an instrumental
role is the classical problem of privacy amplification [BBR88, Mau92, BBCM95]. This
problem considers a setting in which two parties, Alice and Bob, begin by sharing a secret
W ∈ {0, 1}n whose distribution may be far from uniform. The parties interact over a
public communication channel in the presence of an adversary, Eve, and would like to
securely agree on a nearly uniform secret R ∈ {0, 1}m.

In various applications, the secret W is often chosen, for example, as a human-
memorizable password or some biometric data, both of which are typically of rather
low min-entropy, or even as a truly uniform secret which may have been partially leaked
to Eve. The formal way of modeling such sources of randomness is to consider weak-
sources (for the formal definition, see Chapter 2). In this chapter, which is based on a
joint work with Raz and Segev [CRS14], we consider the information-theoretic setting
of the problem where no computational assumptions are made. In particular, Eve is
assumed to be computationally unbounded.

In the presence of a passive adversary that is assumed to only observe the communica-
tion channel between the parties, any strong extractor provides an elegant solution to the
privacy amplification problem. We recall here an informal description of strong seeded
extractors (see Definition 2.16 for the formal definition). A strong seeded-extractor is a
function Ext : {0, 1}n×{0, 1}d → {0, 1}m that takes two inputs, a weak source W and an
independent uniform seed S, and outputs a string Ext(W,S) that is nearly uniform given
the seed S. Using a strong extractor, Alice simply sends Bob a seed S that is chosen
uniformly at random, and they both compute R = Ext(W,S) which is guaranteed to be

17

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

nearly uniform from Eve’s point of view (who sees only the seed S).
In the presence of an active adversary that fully controls the communication channel

between the parties, however, privacy amplification is significantly more challenging. One
reason is that in addition to preventing Eve from learning essentially any information on
the resulting secret R, the protocol should also prevent Eve from causing the parties to
output different secrets R and R′.

In this light, extensive research has been devoted for designing privacy amplification
protocols that are secure under active attacks (see [Mau97, MW97, Wol98, MW03, RW03,
DKRS06, DW09, KR09, CKOR10] and the references therein), with the natural goal of
optimizing the efficiency of such protocols. The main measures of efficiency that have
been studied in this line of research are the following:

1. Required entropy rate: The ratio between the required min-entropy of the weak
secret W and its length.

2. Entropy loss: The difference between the entropy of the weak secret W and the
length of the resulting secret R.

3. Communication complexity: The number of bits exchanged between the two
parties in the protocol.

4. Round complexity: The number of rounds in the protocol.

A major progress in the design of privacy amplification protocols was made by Dodis
and Wichs [DW09]. Their approach relies on introducing the new and elegant notion
of a non-malleable extractor, significantly strengthening the notion of a strong extractor.
Informally, a non-malleable extractor is a function nmExt : {0, 1}n × {0, 1}d → {0, 1}m
that takes two inputs: a weak source W and an independent uniform seed S, and out-
puts a string nmExt(W,S) that is nearly uniform given the seed S as well as the value
nmExt(W,S ′) for any seed S ′ 6= S that may be determined as an arbitrary function of S.

Definition 3.1 (Adversarial Function). Let A : {0, 1}d → {0, 1}d. We say that A is an
adversarial function if it has no fixed points. That is, for every s ∈ {0, 1}d it holds that
A(s) 6= s.

Definition 3.2 (Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-non-malleable extractor if for every (n, k)-source W and independent
random variable S uniformly distributed over {0, 1}d, and for every adversarial function
A : {0, 1}d → {0, 1}d,

SD ((Ext(W,S),Ext(W,A(S)), S), (Um,Ext(W,A(S)), S)) ≤ ε.

We also consider a natural generalization of non-malleable extractors, in which the
adversary has the value of the extractor not only on one correlated seed A(S) of her
choice, but rather on many correlated seeds A1(S), . . . ,At(S) of her choice.

18

3.1 Non-Malleable Extractors and Privacy Amplification

Definition 3.3 (t-Adversarial Function). Let t ∈ N. Let A : {0, 1}d → {0, 1}td. We
think of the output of A as t concatenated binary strings, each of length d. That is, we
think of A(s) as A(s) = (A1(s), . . . ,At(s)), where for all i ∈ [t], Ai is a function of the
form Ai : {0, 1}d → {0, 1}d. We say that A is a t-adversarial function if for every i ∈ [t]
the function Ai is an adversarial function.

Definition 3.4 (t-Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-t-non-malleable extractor if for every (n, k)-source W and independent
random variable S uniformly distributed over {0, 1}d, and for every t-adversarial function
A : {0, 1}d → {0, 1}td,

SD
((

Ext(W,S), {Ext(W,Ai(S))}ti=1, S
)
,
(
Um, {Ext(W,Ai(S))}ti=1, S

))
≤ ε.

3.1.1 Constructions of non-malleable extractors prior to our
work

Although the approach of Dodis and Wichs [DW09] seems very promising, they were in
fact unable to present an explicit construction of a non-malleable extractor (not even one
with poor parameters). They showed, however, using the probabilistic method, that such
extractors, with excellent parameters, exist. More specifically, Dodis and Wichs proved
the existence of a (k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, as
long as

d > log (n− k − 1) + 2 log (1/ε) + 5,

k > 2m+ 2 log (1/ε) + log d+ 6.

Recently, Dodis et al. [DLWZ11b] presented the first explicit construction of a non-
malleable extractor. They showed that an extractor introduced by Chor and Goldriech in
the context of two-source extractors [CG88] is non-malleable as long as the weak source
has min-entropy rate 1/2 + δ for an arbitrarily small constant δ > 0. Their extractor
outputs up to a linear number of bits, but suffers from two drawbacks. First, the seed used
by their extractor is of length d = Ω(n) bits, even for the purpose of extracting a single
bit. Second, the construction is conditional: when outputting more than a logarithmic
number of bits (as required for privacy amplification protocols) its efficiency relies on a
longstanding conjecture on the distribution of prime numbers.

3.1.2 Privacy amplification via non-malleable extractors

Using a non-malleable extractor, Dodis and Wichs constructed the first 2-round privacy
amplification protocol for any min-entropy rate that is secure against active attacks1.
Specifically, Dodis and Wichs demonstrated that the idea underlying the simple pri-
vacy amplification protocol discussed above for passive attacks can be implemented also

1They also showed that 1-round protocols do not exist when the weak secret W has min-entropy
k ≤ n/2, and are inherently inefficient in terms of communication when n/2 < k � n.

19

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

in the setting of active attacks. Moreover, when instantiating their approach with a
non-malleable extractor that enjoys sufficiently good parameters (as well as with an es-
sentially optimal strong extractor), the resulting privacy amplification protocol in turn
enjoys asymptotically optimal entropy loss O(log(n/ε)) and communication complexity
O(log(n/ε)), where ε is the security parameter of the protocol (i.e., the protocol error).

As discussed above, Dodis and Wichs were in fact unable to present an explicit con-
struction of a non-malleable extractor. Nevertheless, they were still able to construct an
explicit privacy amplification protocol by introducing the weaker notion of a look-ahead
extractor2, for which they were able to provide an explicit construction. It is worth noting
that in [Coh15], which is covered in Chapter 4, we make an extensive use of look-ahead
extractor for a completely different purpose. Using their look-ahead extractor, Dodis and
Wichs constructed an explicit 2-round privacy amplification protocol with entropy loss
βk + O(log2 n + log2(1/ε)), for an arbitrarily small constant β > 0, and communication
complexity O(log2 n+ log2(1/ε)), both of which are somewhat far from optimal3.

Dodis et al. [DLWZ11b] showed that when instantiating the protocol of Dodis and
Wichs with their explicit non-malleable extractor one obtains an explicit 2-round privacy
amplification protocol for weak sources of min-entropy rate 1/2 + δ, for an arbitrarily
small constant δ > 0, with entropy loss O(log(n/ε)). However, since the seed of the
extractor is of length Ω(n) bits, the resulting privacy amplification protocol suffers from
communication complexity of Ω(n) bits.

Thus, although the approach of Dodis and Wichs [DW09] for privacy amplification
indeed seems very promising, due to the difficulties in constructing explicit non-malleable
extractors, protocols prior to the work covered in the chapter are rather far from optimal
either in their entropy loss or communication complexity.

Finally, we note that privacy amplification protocols can also be constructed using
various other techniques and tools (and not only using non-malleable extractors). For
example, the privacy amplification protocol of Chandran et al. [CKOR10] uses a some-
what different approach that crucially utilizes repeated interaction between the parties,
and is essentially optimal in all parameters except for its rather high round complexity
of O(log(1/ε)) rounds.

3.2 Our Contribution

In a joint work with Raz and Segev [CRS14], we give an unconditional construction of a
non-malleable extractor with short seeds. More precisely, we prove the following.

2Informally, a look-ahead extractor is a function laExt : {0, 1}n × {0, 1}d → {0, 1}m that takes two
inputs: a weak source W and a uniform seed S, and outputs a string laExt(W,S) whose any suffix is
nearly uniform given the seed S and the complementing prefix of laExt(W,S′) for some seed S′ 6= S that
may be determined as an arbitrary function of S. Note that any non-malleable extractor is in particular
also a look-ahead extractor.

3In fact, the dependence on the min-entropy k of the weak source can be eliminated from the entropy
loss in their protocol. This can be done, for example, simply by instantiating the strong extractor in
their protocol with a different and more suitable extractor.

20

3.2 Our Contribution

Theorem 3.1. For any integers n and d such that 2.01 log n ≤ d ≤ n, and for any
constant δ > 0, there exists an explicit ((1/2 + δ) · n, 2−m)-non-malleable extractor
nmExt : {0, 1}n × {0, 1}d → {0, 1}m, with m = Ω(d).

In particular, setting d = 2.01 log n yields the first explicit construction of a non-
malleable extractor that uses a seed of length O(log n) bits 4. This should be compared
with the original extractor of [DLWZ11b] that uses a seed of length Ω(n) bits. This im-
provement in the seed length is crucial for the communication complexity of the resulting
privacy amplification protocols.

In addition, setting d = n yields the first unconditional explicit construction of a non-
malleable extractor that outputs Ω(n) bits. This should be compared with the extractor
of [DLWZ11b] whose efficiency relies on an unproven conjecture (when outputting ω(log n)
bits). In fact, our extractor is the first non-malleable extractor that outputs ω(log n) bits
unconditionally.

The result is in fact more general, and in fact we show an explicit construction of a t-
non-malleable-extractor with essentially optimal parameters5, as long as the min-entropy
rate of the weak-source is any constant larger than 1/2 and the output length is shorter
than the seed length.

Theorem 3.2. For any integers n, d, m and t, and for any 0 < δ < 1/2 such that

d ≥23

δ
· tm+ 2 log n,

n ≥160

δ
· tm,

δ ≥10 · log (nd)

n
,

there exists an explicit ((1/2 + δ) · n, 2−m)-t-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

3.2.1 Applications to privacy amplification

By instantiating the framework of Dodis and Wichs [DW09] with the non-malleable
extractor from Theorem 3.1 we obtain an explicit 2-round privacy amplification protocol
for weak sources of min-entropy rate 1/2 + δ for an arbitrarily small constant δ > 0.
The protocol offers a trade-off between its entropy loss and communication complexity,
resulting from instantiating it with different explicit constructions of strong extractors.
Specifically, it offers asymptotically optimal entropy loss O(log(n/ε)) with communication
complexity O(min

{
log2 n+ log n · log(1/ε), n

}
), or entropy loss βn+O(log(n/ε)) for an

arbitrarily small constant β > 0 with communication complexity O(log(n/ε)), where the
hidden constant in the big-O notation depends on β. In particular, we prove the following
theorem:

4The constant 2.01 can, in fact, be replaced by any constant strictly greater than 2.
5We made no attempt to optimize the constants in the theorem as they depend on each other.

21

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

Theorem 3.3. For any integer n, constant δ > 0, and security parameter ε = 2−O(n),
there exists an explicit and efficient 2-round privacy amplification protocol for (n, (1/2 +
δ)n)-sources with entropy loss O(log n+ log(1/ε)), and communication complexity
O(min

{
log2 n+ log n · log(1/ε), n

}
).

This is the first explicit 2-round privacy amplification protocol for min-entropy rate
1/2 + δ with asymptotically optimal entropy loss and poly-logarithmic communication
complexity. This should be compared to the previously known 2-round protocols: the
protocol of [DW09] whose entropy loss is not asymptotically optimal, and the protocol
of [DLWZ11b] whose communication complexity is linear in the length of the weak secret.

3.2.2 Subsequent work

Subsequent to the paper [CRS14], on which this chapter builds on, there has been an
extensive research in the construction of non-malleable extractors, and their applications.
Based on ideas from [CRS14], Dodis et al. [DLWZ11c] showed how to reduce the seed
length of their original extractor from [DLWZ11b] so to match the parameters of Theo-
rem 3.1. 6 However, their analysis remains conditional when outputting ω(log n) bits.

Li [Li12a] uses the extractor presented in this chapter, combined with a combinatorial
object called design extractor, and obtains a non-malleable extractor with a logarithmic
length seed that can output Ω(n) bits when fed with an n-bit source with min-entropy
larger than n/2. In [Li12c], Li proves that Bourgain’s two-source extractor [Bou05, Rao07]
is non-malleable, thus achieving a non-malleable extractor that works for sources with
min-entropy 1/2 − ε0 for some small universal constant ε0 > 0. In the same paper Li
proves that a substantial improvement in the construction of non-malleable extractors will
yield (a modest) improvement in the construction of two-source extractors. A simplified
and uniform approach for constructing, among other objects, non-malleable extractors,
was suggested by Dodis and Yu [DY13].

The problem of constructing privacy amplification protocols against an active adver-
sary has been further studied as well. In [Li12b] Li gives new and improved construc-
tions of 2-round privacy amplification protocols based on the notion of non-malleable
condensers, introduced in [Li12a]. In particular, Li presents a protocol for min-entropy
k = Ω(log2(n/ε)) with an optimal entropy loss O(log(n/ε)), and with communication
complexity O(log2(n/ε)). An interesting open problem in this area is to construct a 2-
round privacy amplification protocol for the minimal min-entropy k = O(log(n/ε)) with
an optimal entropy loss O(log(n/ε)).

3.3 Overview of the Construction

In this section we overview the main ideas underlying our constructions. We begin with
the construction of the non-malleable extractor in Section 3.3.1, and then proceed with

6In fact, as pointed out in [DLWZ11c], the construction of Dodis et al. appears to be a special case
of our construction, at least for the one-bit case.

22

3.3 Overview of the Construction

the resulting privacy amplification protocol in Section 3.3.2. The full proofs can be found
in the paper [CRS14], on which this chapter is based.

3.3.1 The non-malleable extractor

Raz [Raz05] gave an explicit construction of seeded-extractors, based on small-bias sets
(see Section 2), or more precisely, on small probability spaces of 0-1 random variables that
have small bias for linear tests of bounded size. We begin by describing the construction
of these extractors, starting with extractors that output one bit, and then turn to describe
our approach.

The Extractor of Raz [Raz05]. Let D = 2d, and let Z1, . . . , ZD be 0-1 random
variables that are ε-biased for linear tests of size k, and assume that the random variables
can be constructed using n random bits. We define Ext : {0, 1}n × {0, 1}d → {0, 1} by
Ext(w, s) = Zs(w). That is, Ext(w, s) is the value of the random variable Zs when using
w as the value of the n bits needed to produce Z1, . . . , ZD. In other words, w is used
to choose the point in the probability space, and s is used to choose the variable from
Z1, . . . , ZD that we evaluate.

Extracting many bits is done similarly: Let D = m · 2d, and let Z1, . . . , ZD be 0-1
random variables, constructed using n random bits, that are ε-biased for linear tests of
size k. We interpret the set of indices {1, . . . , D} as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}.
We define Ext : {0, 1}n × {0, 1}d → {0, 1}m by Exti(w, s) = Z(i,s)(w), where Exti(w, s)
denotes the ith bit of Ext(w, s). In other words, w is used to choose the point in the
probability space, and the pair (i, s) is used to choose the variable from Z1, . . . , ZD that
we evaluate.

Raz showed that the above extractor, based on any small probability space of 0-
1 random variables that have small bias for linear tests of bounded size, is an excel-
lent extractor. Specifically, using any of the probability spaces from [AGHP92], one
gets a ((1/2 + δ) · n, 2−m)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
m = min (Ω(δn),Ω(d)) as long as d = Ω(log n). In the same paper, among other re-
sults, Raz showed that this extractor is a strong seeded-extractor.

Our Approach. We show that the extractor of Raz is in fact non-malleable with
essentially the same parameters. Moreover, we show that it is t-non-malleable with
optimal dependency on t. We now present the proof strategy. For simplicity, we focus on
the case m = t = 1. The proof strategy for the t-non-malleability of the extractor that
extracts m bits follows by the same logic, but it is more technical.

Assume for a contradiction that Ext as defined above is not non-malleable. This
implies the existence of a weak-source W and an adversarial functionA : {0, 1}d → {0, 1}d
such that for a typical seed s ∈ {0, 1}d, the value Ext(W, s) is correlated to Ext(W,A(s)).
We can then find a large set of seeds S ⊆ {0, 1}d such that for every s ∈ S, the random
variable Ys = Ext(W, s)⊕ Ext(W,A(s)) is biased.

23

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

At this point we consider the directed graph G = (S∪A(S), E) where E = {(s,A(s)) :
s ∈ S}. We note that G has no self loops, but it might be the case that G contains cycles.
We prove the existence of a large subset S ′ ⊆ S such that the induced graph of G by
S ′ ∪ A(S ′) is acyclic. To this end we prove a simple lemma about graphs that we prove.

For every s ∈ S ′, define Y ′s = Zs ⊕ ZA(s). In the next step of the proof we prove that
the set of random variables (Y ′s)s∈S′ is ε-biased for linear tests of size at most k/2. This
follows easily by the acyclicity of the above mentioned graph and by the fact that for
every s ∈ S ′, it holds that Y ′s is a parity of two random variables from a probability space
that ε-fools linear tests of size k.

Now we consider the extractor that is built upon the random variables (Y ′s)s∈S′ as
described in the beginning of the section (where the (Y ′s)s∈S′ play the role of (Zi)

d
i=1).

The result of Raz, which holds for any probability space that fools linear tests of bounded
size, implies that this is a good seeded-extractor. This yields a contradiction (for an
appropriate choice of parameters) when feeding the weak-source W to this extractor,
because the random variables (Ys)s∈S′ are all biased.

3.3.2 The privacy amplification protocol

As discussed in Section 3.2.1, by instantiating the framework of Dodis and Wichs [DW09]
with our non-malleable extractor we obtain the first explicit 2-round privacy amplification
protocol for weak sources of min-entropy rate 1/2 + δ, for an arbitrarily small constant
δ > 0, with asymptotically optimal entropy loss and poly-logarithmic communication
complexity. In what follows we first overview the main idea underlying the Dodis-Wichs
protocol, and then discuss the parameters that we obtain by instantiating it with our
non-malleable extractor.

The Dodis-Wichs Protocol. In the presence of a passive adversary that is assumed to
only observe the communication channel between the parties, the privacy amplification
problem is well-understood. Specifically, any strong exactor Ext yields the following
elegant solution: Alice sends Bob a uniform seed S for Ext, and they both compute
R = Ext(W,S), where W is their shared weak secret. The property of the strong extractor
guarantees that the resulting value R is nearly uniform from the adversary’s point of view.

The main idea underlying the approach of Dodis and Wichs is that a non-malleable
extractor nmExt can be used for implementing the above elegant solution in the presence
of an active adversary. Specifically, the non-malleable extractor is used for authenticating
the seed S, and as long as the communication complexity involved in the authentication
is rather small. Since only a small number of bits are revealed to the adversary, W still
has sufficient min-entropy that can be extracted as R = Ext(W,S).

For authenticating the seed S, in the first round of the protocol Alice chooses a
uniform seed Y for a non-malleable extractor nmExt, sends Y to Bob, and computes a key
key = nmExt(W,Y) for a one-time message-authentication code MAC. The adversary may
modify Y to any value Y ′, and in this case Bob might compute a different authentication
key key′ = nmExt(W,Y ′). Then, in the second round of the protocol, Bob samples

24

3.4 Privacy Amplification Protocols Preliminaries

a uniform seed S ′ for a strong extractor Ext, and sends it to Alice together with the
authentication tag σ′ = MACkey′(S

′). At this point Bob concludes his part of the protocol
by outputting the value R′ = Ext(W,S ′). The adversary may modify the pair (S ′, σ′) to
any pair (S, σ), and Alice verifies that σ = MACkey(S). If the verification fails then Alice
aborts, and otherwise Alice outputs R = Ext(W,S).

Note that if the adversary does not modify the seed Y that is chosen by Alice, then
Alice and Bob share the same authentication key = key′, which is nearly uniform from
the adversary’s point of view. Thus, the adversary has only a negligible probability of
computing a valid authentication tag σ for any seed S 6= S ′. In addition, if the adversary
does modify the seed Y to a different seed Y ′, then the property of the non-malleable
extractor guarantees that the authentication key key computed by Alice is nearly uniform
from the adversary’s point of view, even if she receives key′ (and, in particular, if she
receives σ′ which is a deterministic function of S ′ and key′). Thus, again, the adversary
has only a negligible probability of computing a valid authentication tag σ for any seed
S with respect to key (and this holds even if S = S ′). These two observations then easily
imply the security of the protocol.

Our Instantiation. In the Dodis-Wichs protocol the output key = nmExt(W,Y) of
the non-malleable extractor is used as a key for a one-time message authentication code.
It is well known that explicit and efficient constructions of message-authentication codes
exist with keys and authentication tags of length O(log(n/ε)) bits, where n is the length
of the authenticated message and ε is the security parameter.

Using our non-malleable extractor we can set its seed Y to be of length O(log(n/ε))
bits. Then, one can instantiate the strong extractor Ext with any explicit construction,
where we choose the one provided in [GUV09]. It extracts (1/2 + δ)n−O(log(n/ε)) bits
from the weak source W using a seed S of length O(log2 n+ log n · log(1/ε)) bits. When
dealing with a very small security parameter ε one can instead use the extractor provided
by the leftover hash lemma for extracting the same number of bits using a seed of length
n bits. Thus, our protocol has entropy loss O(log(n/ε)), and communication complexity
O(min

{
log2 n+ log n · log(1/ε), n

}
).

3.4 Privacy Amplification Protocols Preliminaries

In this section and the next we give the formal definition of privacy amplification protocols
and the formal definition of message authenticated codes, respectively.

3.4.1 Privacy amplification protocols

Our definition of a privacy amplification protocol (also known as an information-theoretic
key-agreement protocol) follows that of Dodis and Wichs [DW09]. In a privacy amplifi-
cation protocol, two parties, Alice and Bob, begin by sharing a weak secret W ∈ {0, 1}n,
that is, a string sampled from a weak-sourceW . The parties interact over a public commu-
nication channel in the presence of an adversary, Eve, and would like to securely agree on

25

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

a nearly uniform secret R ∈ {0, 1}m. In this paper we consider the information-theoretic
setting of the problem where no computational assumptions are made (in particular, Eve
is assumed to be computationally unbounded), and the weak secret W may be sampled
from any publicly known distribution subject to a pre-specified min-entropy rate. In ad-
dition, we assume that Eve is an active adversary that fully controls the communication
channel between the parties.

At the beginning of the protocol Alice and Bob each have candidate keys RA and
RB, respectively, which are initially set to the special value ⊥. At some point during
the execution of the protocol one party can reach a KeyDerived state and the other party
can reach a KeyConfirmed state. Upon reaching either of these states, a party sets its
candidate key to some m-bit value and does not modify it afterwards. Informally, the
KeyDerived and KeyConfirmed states should be interpreted as follows:

1. If Alice reaches the KeyDerived state, then she possesses a uniformly random candi-
date key RA, which remains private no matter how Eve acts during the remainder
of the protocol execution. However, she is not sure if her key is shared with Bob,
or if Bob is even involved in the protocol execution at all.

2. If Bob reaches the KeyConfirmed state and obtains a candidate key RB, then Alice
must have been involved in the protocol execution, she must have reached the
KeyDerived state, and the two parties share the same key RA = RB which is nearly
uniform from Eve’s point of view.

For formally defining the security of privacy amplification protocols, we first introduce
the following random variables for any adversary Eve:

• We denote by KeyDerivedA and KeyDerivedB the indicators of the events in which
Alice and Bob reach the KeyDerived state, respectively.

• We denote by KeyConfirmedA and KeyConfirmedB the indicators of the events in
which Alice and Bob reach the KeyConfirmed state, respectively.

• We denote by VE the random variable corresponding to the transcript of the pro-
tocol’s execution as seen by Eve (i.e., Eve’s view).

Definition 3.5 (Privacy amplification protocol). In an (n, k,m, ε)-privacy amplification
protocol Alice and Bob share a weak secret W ∈ {0, 1}n and have candidate keys RA, RB ∈
{0, 1}m∪{⊥}, respectively. We require that for any n-bit weak secret W with min-entropy
at least k the protocol satisfies the following properties:

1. Correctness: If Eve is passive then one party must reach the KeyDerived state, the
other party must reach the KeyConfirmed state, and RA = RB ∈ {0, 1}m.

2. Privacy for Alice: For any adversary Eve, if Pr [KeyDerivedA] > 0 then

SD ((RA, VE | KeyDerivedA) , (Um, VE | KeyDerivedA)) ≤ ε.

26

3.4 Privacy Amplification Protocols Preliminaries

3. Privacy for Bob: For any adversary Eve, if Pr [KeyDerivedB] > 0 then

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)) ≤ ε.

4. Authenticity: For any adversary Eve it holds that

Pr [(KeyConfirmedA ∨ KeyConfirmedB) ∧RA 6= RB] ≤ ε.

Given an (n, k,m, ε)-privacy amplification protocol we refer to k −m as its entropy
loss, and to ε as its security parameter. We now elaborate and explain the different
requirements in the above definition.

• First, the correctness requirement naturally asks that whenever the protocol is
executed without any adversarial interference, then Alice and Bob output the same
key (i.e., RA = RB) and this key is indeed an m-bit value (and not the symbol
⊥). Note that at this point the definition does not ask for the resulting key to be
uniformly distributed (it will follow from the privacy requirements that in this case
the key is ε-close to uniform).

• Next, the privacy requirements for Alice and Bob ask that when focusing on execu-
tions in which Alice (respectively, Bob) derives a key RA (respectively, RB), then
from Eve’s point of view, this key is ε-close to an independently and uniformly sam-
pled m-bit key. In particular, in such executions, Eve may be able to completely
determine the key of the other party, but she learns essentially nothing about the
(essentially uniform) key of the party that reached the KeyDerived state.

• Finally, the authenticity requirement asks that if one of the parties reaches the
KeyConfirmed state, then the parties output the same key (i.e., RA = RB) except
with probability at most ε. For understanding this requirement, assume without
loss of generality that Alice is the party that reaches the KeyConfirmed state. By the
semantics of privacy amplification protocols, as discussed above, Bob may either
reach the KeyDerived state, or output RB = ⊥. In the first case (i.e., when Bob
reaches the KeyDerived state), the privacy requirement for Bob states that from
Eve’s point of view, their resulting key is ε-close to an independently and uniformly
sampled m-bit key. In the second case (i.e., when Bob outputs ⊥), both Alice
and Bob output ⊥ and therefore they are both aware of the fact that Eve tried to
interfere.

3.4.2 Message authentication codes

One-time message authentication codes (MACs) provide assurance to the receiver of a
message that it was sent by a specified legitimate sender, even in the presence of an active
and computationally unbounded adversary who controls the communication channel. A
message-authentication code for messages of length n, keys of length `, and authentica-
tion tags of length τ is defined via a family of deterministic and efficiently computable

27

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

functions {MACkey : {0, 1}n → {0, 1}τ}key∈{0,1}` . In terms of security the requirement is
that any adversary that obtains an authentication tag on a single message m of her choice
with respect to a uniform key, should have only a negligible probability of computing a
valid authentication tag on a different message with respect to the same key.

Definition 3.6. A family {MACkey : {0, 1}n → {0, 1}τ}key∈{0,1}` of deterministic and ef-
ficiently computable functions is an ε-secure one-time message authentication code if for
any message m ∈ {0, 1}n and function A : {0, 1}τ → {0, 1}n × {0, 1}τ it holds that

Pr
key←{0,1}`

[MACkey(m
′) = σ′ ∧ m 6= m′ | (m′, σ′) = A (MACkey(m))] ≤ ε .

For the construction of our privacy amplification protocol we rely on the existence of
message-authentication codes with the following parameters (see, for example, [KR09]):

Theorem 3.4. For any integer n and ε > 0 there exists an explicit ε-secure message-
authentication code {MACkey : {0, 1}n → {0, 1}τ}key∈{0,1}`, where τ ≤ log n+ log(1/ε) and
` ≤ 2τ .

3.5 A Central Lemma from [Raz05]

The following lemma is one of the main components that were used in the construction
of two-sources-extractors in [Raz05]. We state the lemma for the special case of seeded-
extractors, and prove it for completeness.

Lemma 3.7. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ε-biased for
linear tests of size k′ that are constructed using n random bits. Define Ext : {0, 1}n ×
{0, 1}d → {0, 1} by Ext(w, s) = Zs(w), that is, Ext(w, s) is the random variable Zs,
when using w as the value of the n bits needed to produce Z1, . . . , ZD. Then, for any
0 < δ < 1/2 and even integer k ≤ k′ such that k · (1/ε)1/k ≤ D1/2, the function Ext is a
((1/2 + δ) · n, γ)-seeded-extractor, with

γ =
(
ε · 2(1/2−δ)n+1

)1/k
.

Proof. Let W be a (n, (1/2 + δ) ·n)-source. Let S be a random variable that is uniformly
distributed over {0, 1}d and is independent of W . We will show that the distribution of
Ext(W,S) is γ-close to uniform. As in [CG88] (see Section 2.1.4), it is enough to consider
the case where W is uniformly distributed over a set W ′ ⊆ {0, 1}n of size 2(1/2+δ)n. For
every w ∈ {0, 1}n and s ∈ {0, 1}d denote

e(w, s) = (−1)Zs(w).

Claim 3.7.1. For any r ∈ [k] and any different s1, . . . , sr ∈ {0, 1}d,∑
w∈{0,1}n

r∏
j=1

e(w, sj) ≤ ε · 2n.

28

3.5 A Central Lemma from [Raz05]

Proof.

∑
w∈{0,1}n

r∏
j=1

e(w, sj) =
∑

w∈{0,1}n

r∏
j=1

(−1)Zsj (w) =
∑

w∈{0,1}n
(−1)Zs1 (w)⊕···⊕Zsr (w),

and since Zs1(w)⊕ · · · ⊕ Zsr(w) is ε-biased, the last sum is at most ε · 2n.

Denote by γ(W,S) the expectation of e(W,S). We will show that |γ(W,S)| ≤ γ.
Obviously, this means that Ext(W,S) is γ-close to uniform, as required.

By the definition

2(1/2+δ)n · 2d · γ(W,S) =
∑
w∈W ′

∑
s∈{0,1}d

e(w, s).

Hence, by a convexity argument and since k is even,

2(1/2+δ)n ·
(
2d · γ(W,S)

)k ≤ ∑
w∈W ′

 ∑
s∈{0,1}d

e(w, s)

k

≤

∑
w∈{0,1}n

 ∑
s∈{0,1}d

e(w, s)

k

=
∑

w∈{0,1}n

∑
s1,...,sk∈{0,1}d

k∏
j=1

e(w, sj)

=
∑

s1,...,sk∈{0,1}d

∑
w∈{0,1}n

k∏
j=1

e(w, sj).

We will break the sum over s1, . . . , sk ∈ {0, 1}d into two sums. The first sum is over
s1, . . . , sk ∈ {0, 1}d such that at least one sj is different than all other elements in
{s1, . . . , sk}, and the second sum is over s1, . . . , sk ∈ {0, 1}d such that every sj is identical
to at least one other element in {s1, . . . , sk}. The number of summands in the first sum
is trivially bounded by 2d·k, and by Claim 3.7.1 each summand is bounded by 2n · ε. The
number of summands in the second sum is bounded by 2d·k/2 · (k/2)k, and each summand
is trivially bounded by 2n. Hence,

2(1/2+δ)·n · 2d·k · γ(W,S)k ≤ 2n · ε · 2d·k + 2n · 2d·k/2 · (k/2)k

≤ 2 · 2n · ε · 2d·k,

where the last inequality follows by the assumption that k · (1/ε)1/k ≤ D1/2. That is,

|γ(W,S)| ≤
(
ε · 2(1/2−δ)n+1

)1/k
.

29

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

3.6 A Simple Lemma about Graphs

The following simple lemma about graphs is another ingredient we need for the proof of
Theorem 3.1.

Lemma 3.8. Let G = (V,E) be a directed graph without self-loops. Assume that the
out-degree of each vertex is exactly t, where parallel edges are allowed. Let w : V → R be
a weight function on the vertices of G. Denote by ω the average vertex weight, that is,
ω = 1

|V | ·
∑

v∈V w(v). Then, there exists a subset of the vertices V ′ ⊆ V , such that the

induced graph H = (V ′, E ′) of G by the set of vertices V ′ has the following properties:

1. H is acyclic,

2. The average vertex weight of H is at least ω/(t + 1), that is, 1
|V ′| ·

∑
v∈V ′ w(v) ≥

ω/(t+ 1),

3. |V ′| ≥ |V |/(t+ 1).

Proof. We construct H by a greedy algorithm. During the running of the algorithm,
every vertex in V has one of the following statuses: available, chosen or forbidden. We
say that a vertex is available if it has an available status. Similarly, we say that a vertex is
chosen / forbidden if it has a chosen / forbidden status. For every vertex v ∈ V we denote
by status(v) the status of the vertex v. For every vertex v, let v+ = {u ∈ V : (v, u) ∈ E}.
The greedy algorithm is defined as follows:

1. For every vertex v ∈ V initialize status(v)← available.

2. While there exists an available vertex,

(a) Let v be an available vertex such that w(v) ≥ w(v′) for any available vertex
v′.

(b) Set status(v)← chosen.

(c) For every vertex v′ ∈ v+, if status(v′) = available set status(v′)← forbidden.

3. Return V ′ = {v : status(v) = chosen}.

Assume for contradiction that H contains a cycle C, that is, C is a cycle of chosen
vertices. Let v be the first chosen vertex in C. Let v′ ∈ v+ be the vertex that follows v
in C. At the time v was chosen, v′ was available, and so the algorithm set the status of
v′ to forbidden. A contradiction is then met as a forbidden vertex is never chosen and so
v′ cannot be in C.

We now prove property 2. Once the algorithm terminates, the status of every vertex
is either chosen or forbidden. For every chosen veretx v, let vA ⊆ v+ be the set of
vertices that were available at the time v was chosen. The vertices of the graph G can
be partitioned as follows:

V =
⋃
v∈V ′

(
{v} ∪ vA

)
. (3.1)

30

3.7 A Conditional Parity Lemma

By Equation (3.1) and by the fact that all (at most t) vertices in vA have a weight which
is no more than w(v), we get∑

v∈V

w(v) =
∑
v∈V ′

(
w(v) +

∑
v′∈vA

w(v′)
)

≤
∑
v∈V ′

(
w(v) + w(v) · |vA|

)
≤ (t+ 1)

∑
v∈V ′

w(v).

Hence,

1

|V ′|
·
∑
v∈V ′

w(v) ≥ 1

|V ′|
· 1

t+ 1
·
∑
v∈V

w(v)

≥ 1

t+ 1
· 1

|V |
·
∑
v∈V

w(v)

=
ω

t+ 1
.

This proves property 2. By Equation (3.1)

|V | =
∑
v∈V ′

(
1 + |vA|

)
≤
∑
v∈V ′

(
1 + t

)
= (t+ 1) · |V ′|,

which proves property 3.

3.7 A Conditional Parity Lemma

The following lemma is a generalization of the Parity Lemma (usually attributed to
Vazirani. See for example [NN93]). A similar lemma appears in [DLWZ11b]. Let Z be a
random variable over {0, 1}m+n. Lemma 3.9 states that given the suffix of length n of Z,
one can bound the statistical distance between the remaining length m prefix of Z and
the uniform distribution in terms of appropriate biases. Setting n = 0 yields the Parity
Lemma.

Lemma 3.9. Let X be a random variable over {0, 1}m. Let Y be a random variable over
{0, 1}n. Then, ∥∥(X, Y)− (Um, Y)

∥∥
1
≤
(∑
∅6=σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ)2
)1/2

,

where Xσ =
⊕

i∈σXi and Yτ =
⊕

i∈τ Yi.

We derive two corollaries from Lemma 3.9.

31

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

Corollary 3.5. Let X be a random variable over {0, 1}m. Let Y be a random variable
over {0, 1}n. Then,

∥∥(X, Y)− (Um, Y)
∥∥

1
≤

∑
∅6=σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ).

Corollary 3.6. Let X be a random variable over {0, 1}m. Let Y be a random variable
over {0, 1}n. Then,∥∥(X, Y)− (Um, Y)

∥∥
1
≤ ((2m − 1) · 2n)1/2 · max

∅6=σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ).

Deriving both corollaries from Lemma 3.9 can be done by applying basic norms in-
equalities.

Proof. Lemma 3.9 Let D ∈ R2m+n
. We index the entries of D by strings of length m+ n

bits. For x ∈ {0, 1}m and y ∈ {0, 1}n, we define

D(xy) = Pr((X, Y) = (x, y))− Pr((Um, Y) = (x, y)),

where xy is the concatenation of x and y. By Parseval and basic norms inequalities,

∥∥(X, Y)− (Um, Y)
∥∥2

1
=
(∑
x∈{0,1}m
y∈{0,1}n

∣∣Pr((X, Y) = (x, y))− Pr((Um, Y) = (x, y))
∣∣)2

=
(∑
x∈{0,1}m
y∈{0,1}n

|D(xy)|
)2

≤ 2m+n ·
∑

x∈{0,1}m
y∈{0,1}n

D(xy)2 (3.2)

= 2m+n · ‖D‖2
2 = 22(m+n) · ‖D̂‖2

2, (3.3)

where D̂ is the Fourier transform of D (we refer the reader to the book of O’Donnell [O’D]
for information regarding Fourier analysis of Boolean functions).

Claim 3.9.1. For every σ ⊆ [m] and τ ⊆ [n]7,

|D̂(στ)| =

 2−(m+n) · bias(Xσ ⊕ Yτ), σ 6= ∅;

0, σ = ∅.

7We slightly abuse notation and identify sets in [m] with their characteristic vectors over {0, 1}m.

32

3.7 A Conditional Parity Lemma

Proof. For every σ ⊆ [m] and τ ⊆ [n],

D̂(στ) =
1

2m+n
·
∑

x∈{0,1}m
y∈{0,1}n

(−1)〈στ,xy〉 ·D(xy)

=
1

2m+n
·
∑

x∈{0,1}m
y∈{0,1}n

(−1)〈στ,xy〉 · Pr ((X, Y) = (x, y))

− 1

2m+n
·
∑

x∈{0,1}m
y∈{0,1}n

(−1)〈στ,xy〉 · Pr ((Um, Y) = (x, y)).

We note that∑
x∈{0,1}m
y∈{0,1}n

(−1)〈στ,xy〉 · Pr((Um, Y) = (x, y)) =
∑

y∈{0,1}n
(−1)〈τ,y〉 · Pr(Y = y) · 1

2m

∑
x∈{0,1}m

(−1)〈σ,x〉.

For σ 6= ∅, it holds that
∑

x∈{0,1}m (−1)〈σ,x〉 = 0. Hence, for σ 6= ∅,

|D̂(στ)| =
∣∣∣ 1

2m+n
·
∑

x∈{0,1}m
y∈{0,1}n

(−1)〈στ,xy〉 · Pr((X, Y) = (x, y))
∣∣∣

=
1

2m+n
· bias(Xσ ⊕ Yτ).

For σ = ∅, it holds that
∑

x∈{0,1}m (−1)〈σ,x〉 = 2m. Therefore, for σ = ∅,

D̂(στ) =
1

2m+n
·
∑

x∈{0,1}m
y∈{0,1}n

(−1)〈τ,y〉 · Pr((X, Y) = (x, y))

− 1

2m+n
·
∑

y∈{0,1}n
(−1)〈τ,y〉 · Pr(Y = y)

=
1

2m+n
·
∑

y∈{0,1}n
(−1)〈τ,y〉

 ∑
x∈{0,1}m

Pr((X, Y) = (x, y)) − Pr(Y = y)


= 0.

By Equation (3.2) and Claim 3.9.1,∥∥(X, Y)− (Um, Y)
∥∥2

1
≤ 22(m+n) · ‖D̂‖2

2 = 22(m+n) ·
∑
σ⊆[m]
τ⊆[n]

D̂(στ)2

=
∑

∅6=σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ)2,

33

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

which concludes the proof of the lemma.

3.8 Proof of Main Theorem

To ease the reading we restate the main theorem.

Theorem 3.7 (Theorem 8.1 – Restated). For any integers n, d, m and t, and for any
0 < δ < 1/2 such that

d ≥23

δ
· tm+ 2 log n,

n ≥160

δ
· tm,

δ ≥10 · log (nd)

n
,

there exists an explicit ((1/2 + δ) · n, 2−m)-t-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

Proof. Theorem 3.7 Let D = m · 2d. Let k′ = dδn/8e. Let ε = 2−n/2+r, where r =
1+log(k′)+ log log(D). The explicit construction we present is the extractor constructed
in [Raz05]. We now describe it. Let Z1, . . . , ZD be 0-1 random variables that are ε-biased
for linear tests of size k′ that are constructed using n random bits. It is easy to verify
that

n ≥ 2 · dlog(1/ε) + log k′ + log logDe,
and so by [AGHP92] (see Section 2.4) such a construction is indeed possible.

We think of the set of indices [D] as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. We define
Ext : {0, 1}n × {0, 1}d → {0, 1}m by Exti(w, s) = Z(i,s)(w), where Exti(w, s) denotes the
ith bit of Ext(w, s). In other words, w is used to choose the point in the probability space
and i, s are used to choose the variable from Z1, . . . , ZD that we evaluate.

Let S be a random variable uniformly distributed over {0, 1}d. Assume for con-
tradiction that Ext is not a ((1/2 + δ) · n, 2−m)-t-non-malleable-extractor. Then, there
exists a source W of length n and min-entropy (1/2 + δ) · n, and a t-adversarial-function
A : {0, 1}d → {0, 1}td such that,

‖
(
Ext(W,S),Ext(W,A1(S)), . . . ,Ext(W,At(S)), S

)
(3.4)

−
(
Um,Ext(W,A1(S)), . . . ,Ext(W,At(S)), S

)
‖1 > 2−m.

As in [CG88] (see Section 2.1.4), we may assume that W is uniformly distributed over a
set W ′ ⊆ {0, 1}n of size 2(1/2+δ)·n.

For every s ∈ {0, 1}d let Xs be the random variable Ext(W, s). By Equation (3.4) and
Lemma 2.9,

Es∼S
[
‖
(
Xs, XA1(s), . . . , XAt(s)

)
−
(
Um, XA1(s), . . . , XAt(s)

)
‖1

]
> 2−m.

34

3.8 Proof of Main Theorem

Hence, by Corollary 3.5,∑
∅6=σ⊆[m]
τ1,...,τt⊆[m]

Es∼S
[
bias

(
(Xs)σ ⊕

(⊕
i∈[t]

(XAi(s))τi
))]

> 2−m.

Let σ∗, τ ∗1 , . . . , τ
∗
t ⊆ [m] be the indices of (one of) the largest summands in the above

sum. For every s ∈ {0, 1}d, let

Ys = (Xs)σ∗ ⊕
(⊕
i∈[t]

(XAi(s))τ∗i
)
.

Then,

Es∼S
[
bias(Ys)

]
> 2−(t+2)m.

Let G = (V,E) be a directed graph with V = {0, 1}d and E = {(s,Aj(s)) : s ∈
V, j ∈ [t]}. Since A is a t-adversarial-function, G has no self-loops. Equip G with a
weight function on the vertices w : V → R that is defined as follows: For every s ∈ V ,
w(s) = bias(Ys).

By Lemma 3.8, there exists a subset V ′ ⊆ V such that the induced graph, H, of G
by V ′ has the properties mentioned in that lemma. In particular, by properties 2 and 3,

µ ,
1

|V ′|
·
∑
s∈V ′

bias(Ys) >
2−(t+2)m

t+ 1
,

and

|V ′| ≥ |V |
t+ 1

=
2d

t+ 1
.

By Markov’s inequality, there exists a subset S ′ ⊆ V ′ such that

|S ′| ≥ µ

2
· |V ′| ≥ 2d−(t+2)m−1

(t+ 1)2
,

and for all s ∈ S ′

bias(Ys) ≥
µ

2
>

2−(t+2)m−1

t+ 1
.

Let S ′0 = {s ∈ S ′ : Pr[Ys = 0] ≥ 1/2}. Let S ′1 = S ′ \ S ′0. There exists b ∈ {0, 1} such that
|S ′b| ≥ |S ′|/2. Denote S ′b by S ′′. Then,

|S ′′| ≥ |S
′|

2
≥ 2d−(t+2)m−2

(t+ 1)2
,

and for all s ∈ S ′′

Pr(Ys = b)− Pr(Ys 6= b) >
2−(t+2)m−1

t+ 1
. (3.5)

35

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

Define a random variable YS′′ over {0, 1} as follows: To sample a bit from YS′′ , uni-
formly sample a string s from S ′′, and then independently sample a string w uniformly
from W ′. The sampled value is Ys(w). We have that

bias(YS′′) = |Pr(YS′′ = 0)− Pr(YS′′ = 1)|

=
1

|S ′′|
·
∣∣∣ ∑
s∈S′′

Pr(Ys = 0)− Pr(Ys = 1)
∣∣∣ (3.6)

=
1

|S ′′|
·
∑
s∈S′′

∣∣Pr(Ys = 0)− Pr(Ys = 1)
∣∣

>
2−(t+2)m−1

t+ 1
,

where the inequality and equality before it follow by Equation (3.5).

For every s ∈ S ′′, let

Y ′s =

(⊕
j∈σ∗

Z(j,s)

)
⊕
(⊕

i∈[t]

(⊕
j∈τ∗i

Z(j,Ai(s))

))
.

Claim 3.9.2. The set of random variables {Y ′s}s∈S′′ ε-fools linear tests of size k′/((t +
1)m).

Proof. Let A ⊆ S ′′ be a nonempty set of size at most ` , k′/((t + 1)m), and let
YA =

⊕
s∈A Y

′
s . We note that YA is a linear combination of random variables from

(Z(i,s))i∈[m],s∈{0,1}d , composed of at most k′ summands. Since (Z(i,s))i∈[m],s∈{0,1}d ε-fools
linear tests of size k′, it is enough to show that this linear combination is non-trivial, that
is, it is suffices to prove that YA is not the constant 0 random variable.

Assume for contradiction that YA = 0. Let e be an arbitrary element in σ∗. Such an
element exists as σ∗ 6= ∅. Let s1 be an arbitrary element in A. Such an element exists as
A 6= ∅. The random variable Z(e,s1) is therefore a summand in YA.

By the assumption that YA = 0, Z(e,s1) must appear an even number of times as a
summand in YA. In particular, Z(e,s1) must appear at least one more time as a summand
in YA. Therefore, there exists some s2 ∈ A and i2 ∈ [t] such that Ai2(s2) = s1.

Since A is an adversarial-function, s2 6= s1 and so the random variable Z(e,s2) is a
summand in YA which is different than Z(e,s1). Following the same logic as above, since
YA = 0, the random variable Z(e,s2) must appear an even number of times as a summand
in YA. In particular, it must appear at least one more time. Hence, there exists some
s3 ∈ A and i3 ∈ [t] such that Ai3(s3) = s2.

We continue this way to get a sequence s1, s2, s3, . . . of elements of A until two elements
in the sequence are equal. Since A is finite, this is bound to happen. However, in such
case, a directed cycle in the graph H is implied, contradicting its acyclicity.

Let k be the largest even integer that is not larger than k′/((t+ 1)m).

36

3.8 Proof of Main Theorem

Claim 3.9.3.
1

10
· δn

(t+ 1)m
≤ k ≤ 1

5
· δn

(t+ 1)m

Proof. As k is the largest even integer that is not larger than k′/((t+ 1)m),

k ∈
{⌊

k′

(t+ 1)m

⌋
− 1,

⌊
k′

(t+ 1)m

⌋}
.

Therefore,

k ≤
⌊

k′

(t+ 1)m

⌋
≤ k′

(t+ 1)m
=
dδn/8e

(t+ 1)m
≤ 1

8
· δn

(t+ 1)m
+

1

(t+ 1)m
≤ 1

5
· δn

(t+ 1)m
,

where the last inequality follows by the assumption that δ ≥ 160 · tm/n ≥ 40/(3 · n). As
for the lower bound on k,

k ≥
⌊

k′

(t+ 1)m

⌋
− 1 ≥ k′

(t+ 1)m
− 2 =

dδn/8e
(t+ 1)m

− 2 ≥ 1

8
· δn

(t+ 1)m
− 2 ≥ 1

10
· δn

(t+ 1)m
,

where, again, the last inequality follows by the assumption that

δ ≥ 160 · tm
n
≥ 80(t+ 1)m

n
.

We apply Lemma 3.7 on the random variables {Y ′s}s∈S′′8. The following claim confirms
that the assumption of Lemma 3.7 is indeed met with the k defined above.

Claim 3.9.4.

k ·
(

1

ε

)1/k

≤
(

2d−(t+2)m−2

(t+ 1)2

)1/2

. (3.7)

Proof. Taking the log(·) of both sides of Equation (3.7) and rearranging the terms, we
see it is enough to prove that

d ≥ (t+ 2)m+ 2 log k +
2

k
log

1

ε
+ 2 log (t+ 1) + 2. (3.8)

By Claim 3.9.3
2

k
· log

1

ε
=

2

k
·
(n

2
− r
)
≤ n

k
≤ 10(t+ 1)m

δ
, (3.9)

and

log k ≤ log

(
δn

5(t+ 1)m

)
≤ log

(n
20

)
. (3.10)

8For simplicity of presentation we assume |S′′| is a power of 2. The exact same result can be obtained
regardless of this assumption.

37

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

By Equations (3.8), (3.9) and (3.10), it is enough to show that

d ≥
(

10(t+ 1)

δ
+ t+ 2

)
m+ 2 log n+ 2 log (t+ 1) + 2− 2 log 20.

Since for all t ≥ 1
22

δ
· t ≥ 10(t+ 1)

δ
+ t+ 2

and
2 log t ≥ 2 log (t+ 1) + 2− 2 log 20,

it is enough to prove that

d ≥ 22

δ
· tm+ 2 log n+ 2 log t.

The above equation holds as we assume

d ≥ 23

δ
· tm+ 2 log n.

Consider the weak-source W . By Lemma 3.7, the distribution of E(W,S ′′) is γ-
biased, for γ = (ε · 21+(1/2−δ)n)1/k = 2(1+r−δn)/k. However, we note that E(W,S ′′) has
the same distribution as YS′′ . In particular, both random variables have the same bias.
Equation (3.6) yields that

2(1+r−δn)/k ≥ bias(E(W,S ′′)) = bias(YS′′) >
2−(t+2)m−1

t+ 1
. (3.11)

We conclude the proof of Theorem 3.7 by the following claim, that stands in contradiction
to Equation (3.11).

Claim 3.9.5.

2(1+r−δn)/k <
2−(t+2)m−1

t+ 1
.

Proof. It is enough to prove that

δn

k
> (t+ 2)m+ log

(
4(t+ 1)

)
+
r

k
.

By Claim 3.9.3, it is enough to show that

(4t+ 3)m > log
(
4(t+ 1)

)
+
r

k
.

Since for all n ≥ 2 (indeed n ≥ 160 · tm/δ ≥ 320),

k′ =

⌈
δn

8

⌉
≤ n

2
,

38

3.9 The Privacy Amplification Protocol

we have that

r = 1 + log k′ + log logD = log (2k′(d+ logm)) ≤ log (ndm). (3.12)

By Equation (3.12) and Claim 3.9.3 we have that

r

k
≤ 10(t+ 1)m

log (ndm)

δn
.

It is therefore enough to prove that

(4t+ 3)m > log
(
4(t+ 1)

)
+ 10(t+ 1)m

log (ndm)

δn
. (3.13)

To prove Equation (3.13) for all t ≥ 1, it is enough to show that

m ≥ 3

7
+

20

7
·m · log (ndm)

δn
,

which holds if

n ≥ 5

δ
· log (ndm). (3.14)

Sincem < n (indeed, by the second assumption of Theorem 3.7, m ≤ δn/(160t) ≤ n/320),
Equation (3.14) holds by the third assumption of Theorem 3.7.

3.9 The Privacy Amplification Protocol

In the section we present the protocol that is obtained by instantiating the Dodis-Wichs
protocol [DW09] with our non-malleable extractor. Given the length n of the weak source
and parameters k, ε′, εnmExt, εExt, and εMAC that we will fix later, the protocol relies on
the following building blocks:

1. A non-malleable (k, εnmExt)-extractor nmExt : {0, 1}n×{0, 1}d1 → {0, 1}` (see Defi-
nition 3.2).

2. A strong (k − (d1 + `)− log(1/ε′), εExt)-extractor Ext : {0, 1}n × {0, 1}d2 → {0, 1}m
(see Definition 2.16).

3. An εMAC-secure message authentication code
{

MACkey : {0, 1}d2 → {0, 1}τ
}
key∈{0,1}`

(see Definition 3.6).

The protocol is described in Figure 1. The following theorem was proved in [DW09],
and we provide here its proof for completeness.

Theorem 3.8. Let nmExt, Ext and MAC be as specified above. Then for any integers n
and k < n, the protocol in Figure 1 is a 2-round (n, k,m, ε)-privacy amplification protocol,
with communication complexity d1 + d2 + τ , where ε = max{ε′ + εExt, εnmExt + εMAC}.

39

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

For obtaining explicit protocols we instantiate the building blocks nmExt, and MAC
with those provided by Theorem 3.1, and Theorem 3.4, respectively. In addition, we
instantiate the strong extractor Ext by either one of those provided by Theorem 2.1,
Theorem 2.2, or Theorem 2.3. We obtain the following two theorems:

Theorem 3.9. For any integer n, constant δ > 0, and security parameter ε = 2−O(n),
there exists an explicit and efficient 2-round (n, (1/2 + δ)n,m, ε)-privacy amplification
protocol with entropy loss O(log(n/ε)), and communication complexity
O(min

{
log2 n+ log n · log(1/ε), n

}
).

Theorem 3.10. For any integer n, constants δ and β such that 1/2 + δ > β > 0, and
security parameter ε = 2−O(n), there exists an explicit and efficient 2-round (n, (1/2 +
δ)n,m, ε)-privacy amplification protocol with entropy loss βn+O(log(n/ε)), and commu-
nication complexity O(log(n/ε)).

Shared input: Alice and Bob share a sample from an (n, k)-source W .

The protocol:

1. Alice samples Y ← {0, 1}d1 uniformly at random, sends it to Bob, and computes key =
nmExt(W,Y).

2. Denote by Y ′ the value received by Bob, who then computes key′ = nmExt(W,Y ′).

3. Bob samples S′ ← {0, 1}d2 uniformly at random, computes σ′ = MACkey′(S
′), and sends

the pair (S′, σ′) to Alice.

4. Bob reaches the KeyDerived state and outputs RB = Ext(W,S′).

5. Denote by (S, σ) the pair received by Alice. If σ = MACkey(S) then Alice reaches the
KeyConfirmed state and outputs RA = Ext(W,S). Otherwise, Alice outputs RA = ⊥.

Figure 1: The Dodis-Wichs privacy amplification protocol.

In the remainder of this section we prove Theorems 3.8, 3.9, and 3.10.

Proof. Theorem 3.8 The correctness of the protocol and the parameters specified in the
theorem follow directly from the description of the protocol. Thus, it only remains to
argue the privacy and authenticity properties of the protocol. Since no assumptions are
made on the computational capabilities of Eve, we assume without loss of generality that
Eve is deterministic. Specifically, this implies that the value Y ′ is a deterministic function
of the value Y , and then the pair (S, σ) is a deterministic function of the vector (Y, S ′, σ′).
Therefore, without loss of generality, we refer to the view of Eve in the protocol as the
vector VE = (Y, S ′, σ′).

We argue the privacy property of the protocol in Lemma 3.10 and the authenticity
property of the protocol in Lemma 3.11. For arguing the privacy of the protocol note that
Bob always reaches the KeyDerived state and Alice never reaches the KeyDerived state

40

3.9 The Privacy Amplification Protocol

(i.e., Pr [KeyDerivedA] = 0 and Pr [KeyDerivedB] = 1). Therefore we only need to bound
SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)).

Lemma 3.10 (Privacy). It holds that

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)) ≤ ε′ + εExt .

Proof. The protocol specifies that Bob always reaches the KeyDerived state and outputs
the value RB = Ext(W,S ′). In addition, recall that Eve’s view consists of VE = (Y, S ′, σ′).
Therefore, where the last inequality follows from the fact that the value σ′ is a determin-
istic function of the values S ′ and key′. Thus, since the value S ′ is uniformly distributed
and independent of W , Y , and key′, in order to complete the argument we only need to
prove that with high probability W has sufficient min-entropy given the pair (Y, key′).
This follows from the fact that the latter pair (Y, key′) is of total length d1 + ` bits. For-
mally, Lemma 2.4 implies that with probability 1−ε′ over the choice of (y, κ′)← (Y, key′)
it holds that

H∞ (W | Y = y, key′ = κ′) ≥ k − (d1 + `)− log(1/ε′).

In turn, the fact that Ext is a strong (k − (d1 + `)− log(1/ε′), εExt)-extractor yields

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)) ≤
SD ((Ext(W,S ′), Y, S ′, key′) , (Um, Y, S

′, key′)) ≤
ε′ + εExt .

Lemma 3.11 (Authenticity). It holds that

Pr [(KeyConfirmedA ∨ KeyConfirmedB) ∧ (RA 6= RB)] ≤ εnmExt + εMAC .

Proof. The protocol specifies that only Alice may reach the KeyConfirmed state, and
therefore

Pr [(KeyConfirmedA ∨ KeyConfirmedB) ∧ (RA 6= RB)] = Pr [KeyConfirmedA ∧ (RA 6= RB)] .

We now consider two cases: one in which S = S ′ (i.e., Eve does not modify S ′) and the
other in which S 6= S ′ (i.e., Eve does modify S ′).

Case 1: S = S′. In this case Alice either reaches the KeyConfirmed state and outputs
RA = Ext(W,S) = Ext(W,S ′) = RB or does not reach the KeyConfirmed state and
outputs RA = ⊥. This implies that

Pr [KeyConfirmedA ∧ (RA 6= RB) | S = S ′] = 0 .

41

3. NON-MALLEABLE EXTRACTORS WITH SHORT SEEDS AND
APPLICATIONS TO PRIVACY AMPLIFICATION

Case 2: S 6= S′. For Alice to reach the KeyConfirmed state Eve must compute a valid
authentication tag σ on S with respect to the authentication key key. This implies
that

Pr [KeyConfirmedA ∧ (RA 6= RB) | S 6= S ′] ≤ Pr [KeyConfirmedA | S 6= S ′]

≤ Pr [σ = MACkey(S) | S 6= S ′]

For analyzing this case we consider two subcases: one in which Y ′ = Y (i.e., Eve
does not modify Y) and the other in which Y ′ 6= Y (i.e., Eve does modify Y). We
show that

Pr [σ = MACkey(S) | S 6= S ′ ∧ Y ′ = Y] ≤ εnmExt + εMAC

Pr [σ = MACkey(S) | S 6= S ′ ∧ Y ′ 6= Y] ≤ εnmExt + εMAC .

Case 2.1: Y = Y ′. In this case Alice and Bob share the same authentication key
key = nmExt(W,Y) = nmExt(W,Y ′) = key′, which we will show to be statistically-
close to a uniform authentication key due to the fact that the view, VE, of Eve cannot
significantly reduce the min-entropy of W . Therefore, the security of the message
authentication code guarantees that even after viewing the authentication tag σ′ =
MACkey(S

′) she has only a negligible probably of computing a valid authentication
tag σ = MACkey(S) for any S 6= S ′.

Formally, the facts that: (1) nmExt is in particular a strong (k, εnmExt)-extractor,
(2) S ′ is independent of W and Y , and (3) Y is uniformly distributed, guarantee
that

SD ((key, Y, S ′) , (U`, Y, S
′)) ≤ εnmExt .

Therefore, the probability that Eve (after viewing σ′ = MACkey(S
′)) computes a

valid authentication tag σ on any S 6= S ′ with respect to authentication key key
differs by at most εnmExt from the probably εMAC that Eve computes a valid authen-
tication tag σ for any S 6= S ′ with respect to a uniformly and independently chosen
authentication key:

Pr [σ = MACkey(S) | S 6= S ′ ∧ Y ′ = Y] ≤ εnmExt + εMAC .

Case 2.2: Y 6= Y ′. In this case Eve views an authentication tag σ′ = MACkey′(S
′)

with respect to the authentication key key′ = nmExt(W,Y ′), and has to compute an
authentication tag σ = MACkey(S) for some S 6= S ′ with respect to the authentica-
tion key key = nmExt(W,Y). The property of the non-malleable extractor nmExt
guarantees that even if Eve was in fact given the authentication key key′ then from
her point of view, the authentication key key is εnmExt-close to an independently and
uniformly chosen key. For such a key Eve can compute such an authentication tag
σ with probability at most εMAC (and this in fact holds even if S = S ′).

42

3.9 The Privacy Amplification Protocol

Formally, the facts that: (1) nmExt is a non-malleable (k, εnmExt)-extractor, (2) S ′ is
independent of W , Y , and key′, and (3) Y is uniformly distributed, guarantee that

SD ((key, Y, key′, S ′) , (U`, Y, key′, S ′)) ≤ εnmExt

which implies

Pr [σ = MACkey(S) | S 6= S ′ ∧ Y ′ 6= Y] ≤ εnmExt + εMAC .

Combining cases 2.1 and 2.2 we obtain

Pr [σ = MACkey(S) | S 6= S ′] ≤ εnmExt + εMAC .

Proof. Theorem 3.9 Given the length n of the weak source, the constant δ, and the
security parameter ε, we let ε′ = εExt = εnmExt = εMAC = ε/2, and instantiate our
protocol with the following explicit constructions:

1. Theorem 3.1 guarantees a non-malleable ((1/2 + δ)n, εnmExt)-extractor nmExt :
{0, 1}n × {0, 1}d1 → {0, 1}`, where d1 = Θ(log(n/ε)) and ` = Θ(log(n/ε)).

2. Theorem 2.1 guarantees a strong ((1/2 + δ)n− (d1 + `)− log(1/ε′), εExt)-extractor
Ext : {0, 1}n × {0, 1}d2 → {0, 1}m, where d2 = Θ(n) and m = (1/2 + δ)n −
Θ(log n + log(1/ε)). In addition, Theorem 2.3 guarantees such a strong extrac-
tor where d2 = Θ(log2 n + log n · log(1/ε)), and therefore we in fact have d2 =
Θ(min

{
log2 n+ log n · log(1/ε), n

}
)

3. Theorem 3.4 guarantees an εMAC-secure MAC
{

MACkey : {0, 1}d2 → {0, 1}τ
}
key∈{0,1}`

where τ = Θ(log n+ log(1/ε)) and ` = Θ(log n+ log(1/ε)).

By combining the above explicit constructions, the resulting privacy amplification proto-
col has security parameter max{ε′+εExt, εnmExt+εMAC} = ε, entropy loss (1/2+δ)n−m =
Θ(log n+ log(1/ε)), and communication complexity

d1 + d2 + τ = Θ(min
{

log2 n+ log n · log(1/ε), n
}

).

Proof. Theorem 3.10 The proof is identical to the proof of Theorem 3.9, where the only
difference is that we instantiate the strong extractor Ext using the one provided by The-
orem 2.2. Specifically, for any constants δ and β such that 1/2 + δ > β > 0, The-
orem 2.2 guarantees a strong ((1/2 + δ)n − (d1 + `) − log(1/ε′), εExt)-extractor Ext :
{0, 1}n × {0, 1}d2 → {0, 1}m, where d2 = Θ(log n+ log(1/ε)) and

m =

(
1− β

1/2 + δ

)
((1/2 + δ)n− (d1 + `)− log(1/ε′)) .

In turn, the resulting privacy amplification protocol has entropy loss (1/2+δ)n−m = βn+
Θ(log n+log(1/ε)), and communication complexity d1 +d2 +τ = Θ(log n+log(1/ε)).

43

44

Chapter 4

Local Correlation Breakers and
Applications to Multi-Source
Extractors and Mergers

4.1 Local Correlation Breakers

As can be seen again and again throughout this thesis, a central theme in pseudoran-
domness concerns the design of efficient algorithms that transform one or more sources
of randomness to a source with a desired property. From the applications end, the most
typical desired property from a source of randomness is simply for it to be uniformly
distributed over some ambient support. Informally speaking, extractors accomplish ex-
actly this task as they produce truly random bits given a sample from a weak source of
randomness (see Section 2).

Constructing extractors of various types is challenging and many constructions in
the literature rely on auxiliary pseudorandom primitives such as mergers and condensers.
These auxiliary objects either have weaker guarantee on the output or further assumptions
on the input, so they are not fit to serve as off-the-shelf objects and are therefore more
intrinsic to the subfield of pseudorandomness. Nevertheless, such objects are very useful
as building blocks for the construction of other pseudorandom objects.

When constructing pseudorandom objects such as extractors, one is often faced with
the problem of correlations between random variables. Namely, at some point in the con-
struction, a sequence of random variables X1, . . . , Xr is obtained, such that one or more
of these random variables is “well-behaved”, yet the correlations between the variables
prevent one from proceeding with the construction and analysis.

Based on the paper [Coh15], in this chapter we present a primitive that we call a local
correlation breaker (LCB for short) that, as its name suggests, allows one to “break”
local correlations between random variables. We further present applications of LCBs
to the construction of three-source extractors, mergers with weak-seeds, and a variant
of non-malleable extractors. As LCBs allows one to face the typical scenario above, we
believe LCBs will find further applications in the future.

45

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

The “well-behaved” property that we consider is being uniformly distributed. Ide-
ally, for some locality parameter t, an LCB would be an algorithm that gets as input
a sequence of r (arbitrarily correlated) random variables, and outputs a sequence of r
random variables with the following property: If the ith input random variable is uniform
then the ith output variable is uniform even given any other t− 1 output variables.

Unfortunately, regardless of efficiency, no deterministic algorithm can accomplish the
task above. A natural suggestion would be to consider seeded-LCBs, namely, LCBs
that have a short auxiliary string of truly random bits (that is independent of the input
variables). Although this suggestion is natural and appealing, given our applications in
mind, we consider a different (and more challenging) variant where the auxiliary source of
randomness is a weak-source of randomness. For the formal definition of LCBs we make
use of standard definitions from the literature such as min-entropy, statistical distance,
and (n, k)-weak-sources (see Section 2).

Definition 4.1 (Local correlation breakers). A t-local correlation breaker (t-LCB) for
min-entropy k, with error ε, is a function

LCB :
(
{0, 1}`

)r × {0, 1}n → ({0, 1}m)r ,

with the following property. Let X = (X1, . . . , Xr) be a sequence of random variables,
each supported on {0, 1}`. Let Y be an independent (n, k)-weak-source. Denote the output
LCB(X, Y) by Z1, . . . , Zr, where each Zi is supported on {0, 1}m. Let g ∈ [r] be such that
Xg is uniform. Let I ⊆ [r] \ {g} be any set of size t− 1. Then,(

Zg, {Zi}i∈I
)
≈ε
(
Um, {Zi}i∈I

)
.

The main technical contribution of this work is an explicit construction of LCBs. For
simplicity, the theorem below is stated for constant error.

Theorem 4.1 (Explicit LCBs; informal statement). For all integers n, r, t, there exists
an explicit t-local correlation breaker LCB :

(
{0, 1}`

)r × {0, 1}n → ({0, 1}m)r with

` = O
(
t2 · log (nr) · log r

)
,

m = Ω (`/(t · log r)) ,

for entropy
k = O (t · log(r) · log (r log n)) .

We emphasize the surprising fact that, in our construction, the dependence of the
entropy k in n is double-logarithmic. One can show that a random function has the same
dependence of k in n, and so it is plausible that this is the right dependence. For a
complete and formal statement of Theorem 4.1, see [Coh15].

A pseudorandom object related to LCBs appears (implicitly) in the analysis of Li’s
multi-source extractor [Li13]. The difference between LCBs and Li’s pseudorandom object
is that the latter only guarantees that an output variable Zg that corresponds to a uniform

46

4.2 Applications of LCBs

input variable Xg is statistically-close to uniform given output variables that correspond
to t− 1 other uniform input variables. In other words, in Li’s pseudorandom object, the
set I in Definition 4.1 is assumed to contain indices only of uniform input variables. For
the applications we consider, it is crucial that Zg is close to uniform even given output
variables {Zi} that correspond to possibly non-uniform input variables.

Our proof builds on the work of [Li13], together with some new ideas required so to
guarantee the stronger property. In terms of parameters, Theorem 4.1 gives LCBs with
somewhat better parameters compared to Li’s pseudorandom object (even though the
guarantee is stronger).

We believe that LCBs are natural pseudorandom primitives as they allow one to face
the recurrent difficulty of having correlation between random variables using (very) weak-
sources of randomness. Next we exemplify the usefulness of LCBs by presenting several
applications.

4.2 Applications of LCBs

4.2.1 Three-source extractors with a double-logarithmic entropy
source

Recall that a function f : {0, 1}n × {0, 1}n → {0, 1}m is called a two-source extractor if
for any two independent sources X, Y over {0, 1}n, with sufficient min-entropy, it holds
that f(X, Y) is statistically-close to uniform. By a standard probabilistic argument,
one can prove the existence of a two-source extractor for any entropies k1, k2 such that
min(k1, k2) > log n+O(1).

Chor and Goldreich [CG88], who introduced the notion of a two-source extractor, gave
an explicit construction for any entropies k1, k2 such that k1 +k2 > (1+δ) ·n, where δ > 0
is an arbitrarily small constant. In particular, one can take k1 = k2 > (1/2+δ) ·n, for any
constant δ > 0. This construction is far from optimal (ignoring the computational aspect).
Nevertheless, it took almost 20 years before any improvement was made. Raz [Raz05]
gave an explicit construction of a two-source extractor for sources with entropies k1, k2,
with k1 = O(log n) and k2 > (1/2 + δ) · n, where δ > 0 is an arbitrarily small constant.
An incomparable result was obtained by Bourgain [Bou05] who constructed a two-source
extractor for entropies k1 = k2 > (1/2 − α) · n, where α > 0 is some (small) universal
constant.

Given the difficulty of explicitly constructing two-source extractors for low entropy,
a significant research effort was directed towards the construction of t-source extractors
for t > 2. The next natural goal is constructing three-source extractors. A simple proba-
bilistic argument can be used to prove the existence of an extractor for three independent
(n, log(n)/2+O(1))-weak-sources. Barak et al. [BKS+05] gave an explicit construction of
a three-source extractor, where the entropy of each of the sources is δn, for any constant
δ > 0. This was improved by Raz [Raz05], who requires only one of the sources to have
entropy δn, while the other two sources can have entropy O(log n). Here, again, δ > 0 is

47

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

an arbitrarily small constant. Raz’s extractor supports a constant error, and in a subse-
quent work, Rao [Rao09a] showed how to support exponentially small error, assuming the
second and third sources have entropy O(log4 n). Furthermore, Rao [Rao09a] constructed
a three-source extractor, where the entropy of each of the sources is n0.9. This was later
improved by Li [Li11] to n1/2+δ, where δ > 0 is an arbitrarily small constant.

In a recent breakthrough, Li [Li15] constructed a three-source extractor for poly-
logarithmic entropy. This exciting result sets the next natural goal in multi-source ex-
tractors on improving the constructions of two-source extractors by Raz [Raz05] and
Bourgain [Bou05]. Towards this goal, as an application of LCBs, we construct a three-
source extractor where one of the sources is only assumed to have double-logarithmic
entropy.

Theorem 4.2 (Explicit three-source extractors; informal statement). For any integer n
and δ > 0, there exists an explicit three-source extractor 3Ext : ({0, 1}n)3 → {0, 1}m for
entropies

k1 = δn,

k2 = poly(1/δ) · log n,

k3 = poly(1/δ) · log log n,

with m = poly(1/δ) · log n output bits.

The extractor in Theorem 4.2 is incomparable with the extractor of [Li15] and im-
proves Raz’s and Rao’s three-source extractors [Raz05, Rao09a] which assume the third
source has entropy Ω(log n). As the third source fed to our three-source extractor is
required to have a tantalizingly low entropy, we hope that further ideas can be used to
eliminate the need for this third source altogether.

Improved three-source extractors for poly-logarithmic entropy As mentioned,
Li [Li15] constructed a three-source extractor for poly-logarithmic entropy. More pre-
cisely, the entropy required by Li’s construction is O(log12 n). For his construction, Li
uses a pseudorandom object that is related to LCBs, introduced in [Li13], as well as the
merger with weak-seeds of [BRSW12]. As our construction of LCBs has better parameters
than Li’s related pseudorandom object, and since our merger with weak-seeds improves
that of [BRSW12] (see the following section), by using our results as building blocks in
Li’s three-source extractor, one can obtain a three-source extractor for a somewhat lower
entropy of Õ(logc n), where c < 12 is some constant. By a short calculation, one can
show that c = 7. Nevertheless, this calculation was not verified as carefully as the other
proofs, and should be trusted accordingly.

4.2.2 Mergers with weak-seeds

Motivated by the construction of seeded extractors, Ta-Shma [TS96] introduced the no-
tion of a merger. Informally speaking, a merger is a function that gets as input a sequence

48

4.2 Applications of LCBs

of (arbitrarily correlated) random variables, at least one of which is uniform. The goal
of a merger is to “merge” the random variables into a single random variable that is
statistically-close to uniform. 1 It is not hard to show that randomness is a necessity for
merging.

Constructing mergers with short seeds (namely, short strings that are uniform and
independent of the random variables we wish to merge) has been studied in several
works [TS96, LRVW03, Raz05, DS07, Zuc07, DR08, DW11, DKSS09]. The state of the
art construction of Dvir and Wigderson [DW11] merges r random variables, supported
on {0, 1}`, using a seed of length O(log(r`)). An incomparable result was obtained by
Dvir, Kopparty, Saraf and Sudan [DKSS09], who use a seed of length O(log(r)/δ) to
output a string that has entropy-rate 1 − δ. As a building block for their celebrated
two-source disperser, Barak, Rao, Shaltiel and Wigderson [BRSW12] constructed, what
we call, mergers with weak-seeds. 2

Definition 4.2 (Mergers with weak-seeds). A merger with weak-seeds for entropy k,
with error ε, is a function

Merg :
(
{0, 1}`

)r × {0, 1}n → {0, 1}m,
with the following property. Let X = (X1, . . . , Xr) be a sequence of random variables,
supported on {0, 1}`, such that at least one of them is uniform. Let Y be an independent
(n, k)-weak-source. Then, Merg(X, Y) ≈ε Um.

In [BRSW12], a construction of a merger with weak-seeds is given, assuming k = ` >
Ω(r2) + polylog(n). 3 A probabilistic argument can be used to show that there exists a
merger with weak-seeds for parameters

` = log n+O(1),

k = log r + log log n+O(1).

In particular, the entropy k is only required to be double-logarithmic in n.

We note that constructing mergers with weak-seeds given an LCB is trivial. Indeed,
one can apply an r-LCB to X1, . . . , Xr and Y so to obtain random variables Z1, . . . , Zr.
The output of the merger is simply the XOR of all Zi’s. To see that this reduction works,
note that if Xg is uniform then, by the guarantee of the LCB, Zg is statistically-close to
uniform even given all other Zi’s. Therefore, the XOR of all Zi’s is statistically-close to
uniform. We use Theorem 4.1 with this simple idea (together with a bit more work so to
improve the output length) and obtain the following result.

1Variants of mergers (which are also called mergers in the literature) assume that one of the random
variables is not necessarily uniform, yet has high entropy-rate.

2In [BRSW12] this object is called an extractor for a general source and a somewhere-random source.
3In fact, the construction of [BRSW12] works even assuming one of the Xi’s has entropy-rate 1−o(1).

49

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Theorem 4.3 (Explicit mergers with weak-seeds; informal statement). For all integers
n, r, there exists an explicit merger with weak-seeds Merg :

(
{0, 1}`

)r×{0, 1}n → {0, 1}m,
with

` = O
(
r2 · log(r) · log(nr)

)
,

k = O (r · log(r) · log(r · log n)) ,

m = Ω(`/r).

The merger of Barak et al. [BRSW12] and ours are incomparable. On one hand, the
merger of [BRSW12] works even if one of the rows has min-entropy rate 1 − o(1). On
the other hand, Theorem 4.3 has a quadratically improved dependence of k in r, and
more importantly, an exponentially improved dependence of k in n, which matches the
probabilistic construction. This feature allows us to obtain a three-source extractor with
double-logarithmic entropy source. Moreover, we believe our construction and analysis
are somewhat simpler and more intuitive than the construction of [BRSW12] which uses
a completely different set of ideas.

4.2.3 Two-source non-malleable extractors

As discussed in Chapter 3, non-malleable extractors were introduced by Dodis and
Wichs [DW09] for the purpose of constructing privacy amplification protocols in the
setting of an active adversary. In [DW09] it is shown that a random function of the form
NMExt : {0, 1}n × {0, 1}d → {0, 1}m is, with high probability, a non-malleable extractor
for entropy k = 2m+log d, with seed length d = log n+O(1). However, explicit construc-
tions of non-malleable extractors fall significantly behind the parameters obtained by the
probabilistic construction, and the state of the art construction has a logarithmic seed
length but only supports entropy k = (1/2− α) · n, where α > 0 is some small universal
constant [Li12b].

Given the challenge of explicitly constructing non-malleable extractors, we consider a
relaxation of non-malleable extractors, which we call two-source non-malleable extractors.
More generally, we consider two-source t-non-malleable extractors, which are defined as
follows.

Definition 4.3 (Two-source t-non-malleable extractors). A function f : ({0, 1}n)2 ×
{0, 1}d → {0, 1}m is called a two-source t-non-malleable extractor for entropies k1, k2,
with error ε, if for any (n, k1)-weak-source X and an independent (n, k2)-weak-source Y ,
the following holds. For any t functions A1, . . . , At : {0, 1}d → {0, 1}d, where each Ai has
no fixed points (that is, for all i ∈ [t] and s ∈ {0, 1}d, Ai(s) 6= s), it holds that(

f(X, Y, S), S, {f(X, Y,Ai(S))}ti=1

)
≈ε (Um, ·) .

We recall that computational aspects aside, if one has access to two independent weak-
sources, then one can output a string that is statistically-close to uniform by applying
a two-source extractor, without any auxiliary seed. However, currently we do not know

50

4.3 (L,R)-Histories

how to efficiently construct two-source extractors for poly-logarithmic entropy or even for
entropy-rate 0.49, and two-source non-malleable extractors can be viewed as a relaxation
both of non-malleable extractors and of two-source extractors. In particular, one can view
a two-source non-malleable extractor with seed length d as a collection of 2d two-source
extractors with the following property: for any two independent weak-sources X, Y with
sufficiently high entropy, most extractors in the collection are two-source extractors for
X, Y , and moreover, the output of a “good” two-source extractor in the collection applied
to X, Y is independent of the output of any other t − 1 extractors from the collection
applied to the same samples.

Building on our construction of LCBs from Theorem 4.1 and on ideas from [Li15], we
construct a two-source non-malleable extractor for poly-logarithmic entropy, with a seed
of logarithmic length.

Theorem 4.4 (Explicit two-source t-non-malleable extractors; informal statement). For
all integers n, t, there exists an explicit two-source t-non-malleable extractor

2NMExt : ({0, 1}n)2 × {0, 1}d → {0, 1}m

for entropy O(t2 · log2 n), with d = O(log n) and m = Θ(t · log n) output bits.

While the current best explicit construction of “standard” non-malleable extractors
(namely, non-malleable extractors with one source) only supports entropy roughly n/2,
Theorem 4.4 states that using two independent weak-sources, one can support poly-
logarithmic entropy. Furthermore, it is worth noting that the seed length d in Theorem 4.4
is independent of t.

4.3 (L,R)-Histories

In this section we introduce the notion of an (L,R)-history and some technical lemmata
concerning it that we use repeatedly throughout the chapter.

Definition 4.4 ((L,R)-histories). Let L,R be two independent random variables. A
sequence of random variables H = (Ht, Ht−1, . . . , H1) is called an (L,R)-history if for
any i ∈ [t], Hi is either a deterministic function of Hi−1, . . . , H1, L or otherwise Hi is a
deterministic function of Hi−1, . . . , H1, R.

Some remarks and notations:

• Throughout the chapter we assume that each Hi is supported on bit strings of some
common length, which we can then denote by |Hi|.

• We note that if Hi+1, Hi are two consecutive random variables in some (L,R)-
history, such thatHi is a deterministic function ofHi−1, . . . , H1, L (resp. Hi−1, . . . , H1, R)
and Hi+1 is a deterministic function of Hi, . . . , H1, L (resp. Hi−1, . . . , H1, R), then

51

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

one can replace Hi+1, Hi by a single random variable which is their joint distribu-
tion. This yields a new (L,R)-history. We allow ourselves to apply this operation
freely during the proofs.

• Given two (L,R)-histories H = (Ht, . . . , H1) and H′ = (H ′t′ , . . . , H
′
1), one can con-

sider the (L,R)-history which is the concatenation ofH,H′, namely, H ′t′ , . . . , H
′
1, Ht, . . . , H1.

When we do not want to refer to the random variables in H but do want to refer
to the random variables in H′ (which is quite frequent), we write this concatenated
(L,R)-history as (H ′t′ , . . . , H

′
1,H).

The following lemma states that conditioned on any fixing of an (L,R)-history, the
random variables L,R remain independent. We omit the proof, which is done by a
straightforward induction.

Lemma 4.5. Let L,R be two independent random variables, and let H be an (L,R)-
history. Then, for any h ∈ sup(H), the random variables (L | H = h) and (R | H = h)
are independent.

In the rest of this section we state and prove two technical lemmata for (L,R)-histories.
Before giving the formal statement of the first lemma, we present the lemma in an infor-
mal manner so to give some intuition about what the lemma aims to abstract. A common
scenario in our proofs is the following. Let L,R be two independent random variables.
We think of L,R as two independent sources of randomness from which we extract ran-
domness again and again and preform various computations on the sequence. We denote
by H = (Ht, . . . , H1) the (L,R)-history that captures the random variables obtained from
L,R so far. Typically we will know that some random variable P is statistically-close to
uniform even given H, namely, (P,H) ≈ (U,H). Furthermore, P is either a deterministic
function of L,H or otherwise P is a deterministic function of R,H. Assume, without
loss of generality, that P is a deterministic function of L,H. Let Ext be a strong seeded
extractor. The following lemma states that if M is a deterministic function of R,H and
H̃∞(M | H) is sufficiently high, then (Ext(M,P), P,H) ≈ (U, P,H).

The proof of this technical lemma is fairly simple. Nevertheless, we apply the lemma
frequently and believe that our proofs are cleaner and conceptually simpler by identifying
the operation that is described and analyzed by the lemma as an atomic operation.

Lemma 4.6. Let L,R be two independent random variables, and let H be an (L,R)-
history. Let P be a random variable over {0, 1}p which is a deterministic function of
L,H. 4 Assume that

(P,H) ≈δ (Up,H) . (4.1)

Let M be a random variable over {0, 1}m which is a deterministic function of R,H, such
that

H̃∞ (M | H) ≥ k + log(1/ε). (4.2)

4Note that any (L,R)-history is also an (R,L)-history, and so an analog statement of the lemma in
which P is a deterministic function of R,H readily follows.

52

4.3 (L,R)-Histories

Let Ext : {0, 1}m×{0, 1}p → {0, 1}f be a strong seeded extractor for entropy k with error
ε. Define F = Ext (M,P). Then, P,H is an (L,R)-history, and

(F, P,H) ≈δ+2ε (Uf , P,H) .

Proof. Let h ∈ sup(H). For the sake of readability, for a random variable T , we denote
the random variable (T | H = h) by Th. Let δh = SD (Ph, Up). By Lemma 2.9 and
Equation (4.1),

E
h∼H

[δh] = E
h∼H

[SD (Ph, Up)] = SD ((P,H) , (Up,H)) ≤ δ.

Note that the random variables Mh, Ph are independent. Indeed, Lemma 4.5 implies that
the random variables Lh, Rh are independent, and M is a deterministic function of R,H
whereas P is a deterministic function of L,H. Therefore, by Lemma 2.9,

SD ((Fh, Ph) , (Uf , Ph)) = E
s∼Ph

[SD (Fh | Ph = s, Uf)] = E
s∼Ph

[SD (Ext (Mh, s) , Uf)] . (4.3)

Since SD (Ph, Up) = δh and since the range of the function g(s) = SD (Ext (Mh, s) , Uf) is
contained in the interval [0, 1], Lemma 2.13 implies that

E
s∼Ph

[SD (Ext (Mh, s) , Uf)] ≤ E
s∼Up

[SD (Ext (Mh, s) , Uf)] + δh. (4.4)

Equation (4.3) and Equation (4.4) imply that

SD ((Fh, Ph) , (Uf , Ph)) ≤ E
s∼Up

[SD (Ext (Mh, s) , Uf)] + δh.

As we assume that H̃∞ (M | H) ≥ k + log(1/ε), Lemma 2.4 implies that

Pr
h∼H

[H∞ (Mh) ≥ k] ≥ 1− ε.

We say that h is good if H∞(Mh) ≥ k. Since Ext is a strong seeded extractor for entropy
k with error ε, for any good h it holds that

SD ((Fh, Ph) , (Uf , Ph)) ≤ ε+ δh.

By Lemma 2.9,

SD ((F, P,H) , (Uf , P,H)) = E
h∼H

[SD ((Fh, Ph) , (Uf , Ph))] .

The right hand side is bounded above by

E
h∼H

[
SD ((Fh, Ph) , (Uf , Ph))

∣∣ h is good
]
· Pr
h∼H

[h is good] + Pr
h∼H

[h is not good] ≤ δ+ 2ε,

as stated. The fact that P,H is an (L,R)-history readily follows since H is an (L,R)-
history and P is a deterministic function of L,H.

53

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

The following lemma is also used frequently in our proofs.

Lemma 4.7. Let L,R be two independent random variables, and let H be an (L,R)-
history. Let P be a random variable that is a deterministic function of R,H. Let J be a
random variable that is a deterministic function of L,H. Then,

SD ((P, J,H) , (U, J,H)) = SD ((P,H) , (U,H)) .

Moreover, J,H is an (L,R)-history.

Proof. The fact that J,H is an (L,R)-history readily follows since H is an (L,R)-history
and J is a deterministic function of L,H. Now, by Lemma 2.9,

SD ((P, J,H) , (U, J,H)) = E
h∼H

[SD (((P, J) | H = h) , (U, J | H = h))] .

For any h ∈ sup(H), the random variable (P | H = h) is a deterministic function of R
whereas (J | H = h) is a deterministic function of L. Since (L | H = h), (R | H = h) are
independent, as guaranteed by Lemma 4.5, we have that (P | H = h) and (J | H = h)
are independent. Thus, Lemma 2.10 implies that

SD ((P, J,H) , (U, J,H)) = E
h∼H

[SD (P | (H = h) , U)] ,

which concludes the proof, as by Lemma 2.9, the right hand side of the above equation
equals to SD ((P,H) , (U,H)).

4.4 Two-Steps Look-Ahead Extractors

In this section we present a restricted version of look-ahead extractors. Building on the
idea of alternating extraction [DP07], Dodis and Wichs [DW09] introduced the notion
of look-ahead extractors. Look-ahead extractors were further used by Li [Li13, Li15] for
his multi-source extractors. In these cases, the look-ahead extractors were applied for
some non-constant number of “steps” or “rounds”. We construct our LCBs using look-
ahead extractors with only two steps. This in turn allows us to present relatively simple
constructions of LCBs, which are also easier to analyze. Since we need only this very
restricted version, and since we use it in the analysis of our constructions in a white-box
manner, we give in this section the construction for two-steps look-ahead extractors.

Let n, a, h be integers and let ε > 0 be such that a = Ω(log(h/ε)) and h = Ω(log(n/ε)).
Set s = Θ(log(n/ε)), where some appropriately chosen large enough universal constant
is hidden under the Θ notation. Let Ext1 : {0, 1}n×{0, 1}s → {0, 1}a and Ext2 : {0, 1}h×
{0, 1}a → {0, 1}s be strong seeded extractors from Theorem 2.2, both with error ε. Note
that the choice of s and the assumption on a guarantee that the seed lengths of Ext1 and
Ext2 are sufficient. Moreover, by Theorem 2.2, Ext1 is an extractor for entropy 2a and
Ext2 is an extractor for entropy 2s. Define the function

LookAheadExt : {0, 1}h × {0, 1}n → {0, 1}a × {0, 1}a

54

4.5 Proof of Lemma 4.8

as follows. Given W ∈ {0, 1}h and Y ∈ {0, 1}n, let

A = Ext1(Y,W |s),
Z = Ext2(W,A),

B = Ext1(Y, Z).

Define

LookAheadExt(W,Y) = (A,B).

With notations as above, we have the following lemma.

Lemma 4.8. Let r be an integer. Let X, Y be two independent random variables, and
let H be an (X, Y)-history such that

H̃∞ (Y | H) ≥ (r + 2)a+ log(1/ε). (4.5)

Let W be a random variable of the form of an r × h matrix, which is a deterministic
function of X,H, where

h ≥ (r + 2)s+ log(1/ε). (4.6)

Assume further that there exists g ∈ [r] such that

(Wg,H) ≈δ (Uh,H) . (4.7)

For each i ∈ [r], let (Ai, Bi) be the output LookAheadExt(Wi, Y). Then the following
holds:

• H′ = (W,Zg, {Ai}ri=1,W |s,H) is an (X, Y)-history.

• (Bg,H′) ≈2δ+6ε (Ua,H′).

• H̃∞(Y | H′) ≥ H̃∞(Y | H)− ra.

• For any random variable N which is a deterministic function of X,H, it holds that
H̃∞(N | H′) ≥ H̃∞(N | H)− rh.

As mentioned, Lemma 4.8 is not new and general versions of it appear in the literature.
Nevertheless, as we consider a restricted setting and since the lemma as stated uses the
notion of (L,R)-histories (which is new), a direct proof for the lemma above does not
appear in the literature (though existing proofs can be adopted in a straightforward
manner). Thus, for completeness, we give a proof for Lemma 4.8 in the following section.

4.5 Proof of Lemma 4.8

For the proof of Lemma 4.8 we use the following simple lemma.

55

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Lemma 4.9. Let X, Y be two random variable over a common domain D. Let E ⊆ D
be an event. Then,

SD (X | E, Y | E) ≤ 1

Pr[E]
· SD (X, Y) .

We start by proving the following lemma.

Lemma 4.10. Let L,R be two independent random variables, and let H be an (L,R)-
history. Let M be a random variable over {0, 1}m which is a deterministic function of
H, L such that

(M,H) ≈δM (Um,H) . (4.8)

Let J be a random variable over {0, 1}j which is a deterministic function of H, L. Let P
be a random variable over {0, 1}p which is a deterministic function of H, R, J , such that

(P, J,H) ≈δP (Up, J,H) . (4.9)

Let Ext : {0, 1}m × {0, 1}p → {0, 1}f be a strong seeded extractor for entropy m − j −
log(1/ε), with error ε. Define F = Ext(M,P). Then, P, J,H is an (L,R)-history, and

(F, P, J,H) ≈δP+δM+2ε (Uf , P, J,H) .

Proof of Lemma 4.10. For h ∈ sup(H) denote by Jh the random variable (J | H = h).
For j ∈ sup(Jh) let Eh,j be the event H = h, Jh = j. For the sake of readability, we let
Mh,j denote the random variable (M | Eh,j). Similarly, we define Ph,j, Lh,j, Rh,j to be
(P | Eh,j), (L | Eh,j) and (R | Eh,j), respectively.

Since J is a deterministic function of H, L, the random variable Jh is a deterministic
function of L. Thus, even after further conditioning on the event Jh = j, the random
variables L,R remain independent. That is, the random variables Lh,j and Rh,j are
independent. Furthermore, since P is a deterministic function of H, R, J and M is a
deterministic function of H, L, we have that Mh,j and Ph,j are independent.

Let δP ;h,j = SD (Ph,j, Up). By Equation (4.9) and Lemma 2.9 we have that

E
h∼H

E
j∼Jh

[δP ;h,j] ≤ δP .

Since Mh,j and Ph,j are independent, Lemma 2.9 implies that

SD ((Ext (Mh,j, Ph,j) , Ph,j) (Uf , Ph,j)) = E
s∼Ph,j

[SD (Ext (Mh,j, s) , Uf)] .

As the function g(s) = SD (Ext (Mh,j, s) , Uf) attains values in the interval [0, 1], Lemma 2.13
yields

E
s∼Ph,j

[SD (Ext (Mh,j, s) , Uf)] ≤ E
s∼Up

[SD (Ext (Mh,j, s) , Uf)] + δP ;h,j.

Thus,

SD ((F, P, J,H) , (Uf , P, J,H)) = E
h∼H

E
j∼Jh

E
s∼Ph,j

[SD (Ext (Mh,j, s) , Uf)]

≤ E
h∼H

E
j∼Jh

(
E

s∼Up
[SD (Ext (Mh,j, s) , Uf)] + δP ;h,j

)
≤ E

h∼H
E

j∼Jh
E

s∼Up
[SD (Ext (Mh,j, s) , Uf)] + δP .

56

4.5 Proof of Lemma 4.8

Let δM ;h = SD ((M | H = h),M ′), where M ′ is a random variable that is uniformly
distributed over {0, 1}m and is independent of H. By Equation (4.8) and Lemma 2.9,

E
h∼H

[δM ;h] ≤ δM .

Lemma 4.9 implies that for every j ∈ sup(Jh), the distribution of the random variable
Mh,j is δM ;h,j-close to the distribution (M ′ | Jh = j), where

δM ;h,j =
δM ;h

Pr[Jh = j]
.

Let M ′
h,j be a random variable with distribution (M ′ | Jh = j). By the triangle inequality

and Lemma 2.8, it holds that

SD (Ext (Mh,j, s) , Uf) ≤ SD
(
Ext (Mh,j, s) ,Ext

(
M ′

h,j, s
))

+ SD
(
Ext
(
M ′

h,j, s
)
, Uf
)

≤ SD
(
Mh,j,M

′
h,j

)
+ SD

(
Ext
(
M ′

h,j, s
)
, Uf
)

= δM ;h,j + SD
(
Ext
(
M ′

h,j, s
)
, Uf
)
,

and so,

SD ((F, P, J,H) , (Uf , P, J,H)) ≤ E
h∼H

E
j∼Jh

E
s∼Up

[
SD
(
Ext
(
M ′

h,j, s
)
, Uf
)

+ δM ;h,j

]
+ δP

≤ E
h∼H

E
j∼Jh

E
s∼Up

[
SD
(
Ext
(
M ′

h,j, s
)
, Uf
)]

+ δM + δP .

(4.10)

By Lemma 2.3, for any h ∈ sup(H), H̃∞(M ′
h,j) = H̃∞(M ′ | Jh = j) ≥ m − j. Thus, by

Lemma 2.4, for any h ∈ sup(H),

Pr
j∼Jh

[
H∞(M ′

h,j) ≥ m− j − log(1/ε)
]
≥ 1− ε.

We say that a pair h, j, where h ∈ sup(H) and j ∈ sup(Jh), is good if H∞(M ′
h,j) ≥

m− j− log(1/ε). By the above, for every h ∈ sup(H), with probability 1− ε over j ∼ Jh
it holds that the pair h, j is good. Since Ext is a strong seeded extractor for entropy
m− j − log(1/ε) and error ε, we have that the contribution of any good pair h, j to the
expectation in Equation (4.10) is at most ε. Since 1 − ε fraction of the pairs are good,
and since any pair contributes at most 1 to the expectation, we get that

SD ((F, P, J,H) , (Uf , P, J,H)) ≤ 2ε+ δM + δP ,

as stated. To conclude the proof of the lemma, note that P, J,H is an (L,R)-history since
H is an (L,R)-history, J is a deterministic function of H, L, and P is a deterministic
function of R and J,H (note that J precede P in the history and so P is allowed to
depend on J).

57

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Proof of Lemma 4.8. We apply Lemma 4.6 to the (X, Y)-history H with P = (Wg)|s,
M = Y and the extractor Ext1. The hypothesis of Lemma 4.6 is met since the random
variable P = (Wg)|s is a deterministic function of X,H. Moreover, by the Equation (4.5),

H̃∞ (Y | H) ≥ 2a + log(1/ε). Since Ext1 is a strong seeded extractor for entropy 2a,
Equation (4.2) of Lemma 4.6 holds. Since Ag = Ext1 (Y, (Wg)|s), Lemma 4.6 together
with Equation (4.7) imply that

(Ag, (Wg)|s,H) ≈δ+2ε (Ua, ·).

Moreover, (Wg)|s,H is an (X, Y)-history.
Note that Ag is a deterministic function of Y and (Wg)|s, whereas the joint distribution

of {(Wi)|s}i∈[r]\{g} is a deterministic function of X and H. Thus, Lemma 4.7 applied with
P = Ag, J = {(Wi)|s}i∈[r]\{g} and the (X, Y)-history (Wg)|s,H, implies that

(Ag,W |s,H) ≈δ+2ε (Ua, ·). (4.11)

Furthermore, W |s,H is an (X, Y)-history.
We apply Lemma 4.10 to the (X, Y)-history H, with M = Wg, P = Ag, J = W |s and

the extractor Ext2. The hypothesis of Lemma 4.10 is met since W |s,Wg are deterministic
functions of H, X, and Ag is a deterministic function of Y,W |s. Moreover, Equation (4.6)
implies that

|Wg| − |(W |s)| − log(1/ε) = h− rs− log(1/ε) ≥ 2s.

Since Ext2 is a strong seeded extractor for entropy 2s with error ε, Lemma 4.10 together
with Equation (4.7) and Equation (4.11) imply that

(Zg, Ag,W |s,H) ≈2δ+4ε (Us, ·). (4.12)

Furthermore, Ag,W |s,H is an (X, Y)-history.
We apply Lemma 4.7 with P = Zg, the (X, Y)-historyAg,W |s,H and J = {Ai}i∈[r]\{g},

and conclude that
(Zg, {Ai}ri=1,W |s,H) ≈2δ+4ε (Us, ·). (4.13)

This application of Lemma 4.7 is valid since Zg = Ext2(Wg, Ag) is a deterministic function
of Ag, which is contained in the (X, Y)-history to which we apply the lemma, and Wg

which, by assumption, is a deterministic function of X,H (and H is also contained in
(X, Y)-history above). On the other hand, the joint distribution of {Ai}i∈[r]\{g} is a
deterministic function of Y,W |s, and W |s is contained in the (X, Y)-history to which we
apply the lemma. Lemma 4.7 further implies that {Ai}ri=1,W |s,H is an (X, Y)-history.

Next, we apply Lemma 4.6 to the (X, Y)-history {Ai}ri=1,W |s,H with P = Zg, M = Y
and the extractor Ext1. The hypothesis of Lemma 4.6 is met since the random variable
Zg = Ext2(Wg, Ag) is a deterministic function of X,H, Ag, and H, Ag are contained in the
(X, Y)-history to which we apply the lemma. In terms of entropy,

H̃∞ (Y | {Ai}ri=1,W |s,H) ≥ H̃∞ (Y | (W |s),H)− ra
= H̃∞ (Y | H)− ra
≥ 2a+ log(1/ε), (4.14)

58

4.6 A Warm Up – Merging Three Rows

where the first inequality follows by Lemma 2.3 and the fact that {Ai}ri=1 consists of
ra bits. The second equality follows by Lemma 2.6, which is applicable in this case as
conditioned on any fixing of H, the random variables W |s, Y are independent. The last
inequality follows by Equation (4.5). Since Ext1 is a strong seeded extractor for entropy
2a, Equation (4.2) of Lemma 4.6 holds. As Bg = Ext1 (Y, Zg), Lemma 4.6 together with
Equation (4.13) imply that

(Bg, Zg, {Ai}ri=1,W |s,H) ≈2δ+6ε (Ua, ·).

Moreover, Zg, {Ai}ri=1,W |s,H is an (X, Y)-history.
Note that Bg is a deterministic function of Y, Zg whereas W is a deterministic function

of X,H. Thus, we can apply Lemma 4.7 with P = Bg and J = W to the (X, Y)-history
Zg, {Ai}ri=1,W |s,H and conclude that

(Bg,H′) ≈2δ+6ε (Ua, ·),

whereH′ = (W,Zg, {Ai}ri=1,W |s,H) is an (X, Y)-history. This proves the first and second
items of the lemma.

As for the third item, since W and Y are independent conditioned on any fixing of
Zg, {Ai}ri=1,W |s,H, Lemma 2.6 implies that

H̃∞ (Y | H′) = H̃∞ (Y | Zg, {Ai}ri=1,W |s,H) .

Similarly, conditioned on any fixing of {Ai}ri=1,W |s,H, the random variables Y and Zg
are independent, and so

H̃∞ (Y | H′) = H̃∞ (Y | {Ai}ri=1,W |s,H) .

By Equation (4.14), the right hand side of the equation above is bounded below by

H̃∞ (Y | H)− ra, which proves the third item of the lemma.
As for the fourth item, note that Zg is a deterministic function of W,Ag, and W |s is

a deterministic function of W , and so

H̃∞ (N | H′) = H̃∞ (N | W, {Ai}ri=1,H) .

Note that conditioned on any fixing of W,H, the random variables {Ai}ri=1 are deter-
ministic functions of Y . Since N is a deterministic function of X,H, Lemma 2.6 further
implies that

H̃∞ (N | H′) = H̃∞ (N | W,H) ≥ H̃∞ (N | H)− rh,
where the last inequality follows by Lemma 2.3.

4.6 A Warm Up – Merging Three Rows

In order to convey the ideas underling our LCBs, we present in this section a construction
of a merger with weak-seeds for a somewhere-random source with only three rows. This

59

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

X|h

LookAheadExt(X|h, Y)

A B

Ext3(X,)

X ′

LookAheadExt(X ′, Y)

A′ B′

Ext3(X,)

X ′′

LookAheadExt(X ′′, Y)

A′′ B′′

Ext3(X,)

X ′′′

⊕

Figure 4.1: A schematic diagram of the three rows merger Merg3.

60

4.6 A Warm Up – Merging Three Rows

toy example allows us to present some of the ideas used in the actual constructions of our
mergers with weak-seeds (Theorem 4.3) and LCBs (Theorem 4.1). This section is meant
only for building up intuition, and presenting the underling ideas behind our constructions
without getting into all the details.

During this section we ignore the error analysis as this does not affect the parameters
and slightly complicates the presentation. In particular, when applying Lemma 4.6 and
Lemma 4.8 we ignore the expression log(1/ε) in Equation (4.2) and in Equation (4.5).

In this section we prove the following theorem which, roughly speaking, states that one
can efficiently and deterministically merge the rows of a 3× ` somewhere-random source,
using an independent (n, k)-weak-source, even when ` = Θ(log n) and k = Ω(log log n).

Theorem 4.5 (Merging three rows). For any integer n, there exists a poly(n)-time
computable function

Merg3 :
(
{0, 1}`

)3 × {0, 1}n → {0, 1}m,

where ` = Θ(log n) and m = Ω(`), with the following property. Let X be a 3 ×
` somewhere-random source. Let Y be an independent (n, k)-weak-source with k =
Ω(log log n). Then, Merg3(X, Y) ≈ Um.

Proof. During the proof of this toy example we assume that the second row, X2, is
good. Of course, the algorithm Merg3 will not rely on this assumption (or otherwise the
algorithm can simply output X2). We use the assumption that X2 is uniform only for
the analysis. We exemplify this with the good row being the second row just to avoid
introducing more indices. Since the second row is not the first or the last row, this will
enable us to demonstrate all the ideas needed to prove the theorem for any number of
rows.

We turn to present the construction of Merg3. For the reader’s convenience, the
construction is depict in Figure 4.1. As mentioned, the problem of merging the 3 rows
X1, X2, X3, with X2 being the good row, is reduced to the problem of obtaining random
variables X ′′′1 , X

′′′
2 , X

′′′
3 , where each X ′′′i is a function of Xi and Y , with the following

property: (X ′′′2 , X
′′′
1 , X

′′′
3) ≈ (U,X ′′′1 , X

′′′
3), namely, constructing 3-LCBs for 3 rows. Once

this independence is obtained, one can simply output

Merg3(X, Y) = X ′′′1 ⊕X ′′′2 ⊕X ′′′3 .

Set h to be just large enough for the two-steps look-ahead extractor from Section 4.4
with r = 3. Taking h = Θ(log n) will do. Set a = Θ(log log n) and note that this choice
of a satisfies the hypothesis of the two-steps look-ahead extractor. We now compute

(A1, B1) = LookAheadExt ((X1)|h, Y) ,

(A2, B2) = LookAheadExt ((X2)|h, Y) ,

(A3, B3) = LookAheadExt ((X3)|h, Y) ,

61

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

and then compute

X ′1 = Ext3(X1, B1),

X ′2 = Ext3(X2, A2),

X ′3 = Ext3(X3, A3),

where Ext3 : {0, 1}`×{0, 1}a → {0, 1}h is the strong seeded extractor from Theorem 2.2 for
entropy 2h. 5 This was the first iteration of the algorithm Merg3, in which we produced the
random variables X ′1, X

′
2 and X ′3 from X1, X2, X3 and Y . In the second iteration we will

compute X ′′1 , X
′′
2 and X ′′3 from X ′1, X

′
2, X

′
3 and X, Y in a similar way. The difference will

be that instead of taking the B variable as a seed for the first row and the corresponding
A variables to the other rows, we will take the B variable as a seed for the second row
and the corresponding A variables to the other two rows. More formally, we compute

(A′1, B
′
1) = LookAheadExt (X ′1, Y) ,

(A′2, B
′
2) = LookAheadExt (X ′2, Y) ,

(A′3, B
′
3) = LookAheadExt (X ′3, Y) ,

and then set

X ′′1 = Ext3(X1, A
′
1),

X ′′2 = Ext3(X2, B
′
2),

X ′′3 = Ext3(X3, A
′
3).

The algorithm continues for one more iteration, and computes

(A′′1, B
′′
1) = LookAheadExt (X ′′1 , Y) ,

(A′′2, B
′′
2) = LookAheadExt (X ′′2 , Y) ,

(A′′3, B
′′
3) = LookAheadExt (X ′′3 , Y) ,

and then computes

X ′′′1 = Ext3(X1, A
′′
1),

X ′′′2 = Ext3(X2, A
′′
2),

X ′′′3 = Ext3(X3, B
′′
3).

Informally speaking, we want to show that if there is enough entropy in Y and in X2

(namely, ` is large enough), then X ′′′2 is close to uniform even given X ′′′1 , X
′′′
3 . This is

formalized by the following claim. By the discussion above, once we prove Claim 4.10.1,
Theorem 4.5 will follow.

5We use the name Ext3 because during the proof we will argue about the random variables obtained
by the two-steps look-ahead extractor from Section 4.4, which uses two strong seeded extractors we
denoted by Ext1 and Ext2.

62

4.6 A Warm Up – Merging Three Rows

Claim 4.10.1. If k ≥ 11a and ` ≥ 13h, then

(X ′′′2 , X
′′′
1 , X

′′′
3) ≈ (Uh, X

′′′
1 , X

′′′
3).

Before proving Claim 4.10.1, we present the high-level strategy of the proof, which
consists of three steps.

• First, we show that in iterations that precede the “good” iteration (that is, the
iteration in which the good row is given the B variable, which in our case is the
second iteration) the assumption on the input is preserved. Namely, at the end of
each such iteration, an output row that corresponds to a good input row is uniform,
and the joint distribution of the rows is independent of Y .

• In the second step we show that after the good iteration was executed, the respective
output row “gains its independence”. That is, an output row that corresponds to
a good input row is uniform even conditioned on all other output rows. Moreover,
the joint distribution of the rows is independent of Y .

• In the third step we show that the independence of the good row is “preserved”
throughout the remaining iterations. Namely, an output row that corresponds to
a good input row remains uniform even conditioned on all other output rows, and
moreover, the joint distribution of all output rows is independent of Y .

Proof of Claim 4.10.1. The proof will follow the three iterations of the algorithm. In the
first iteration we give the “lead”, namely the B variable, to the “wrong” row X1. We
show that nothing bad happens by letting X1 have the lead, in the following sense: after
this iteration, we have that the joint distribution (X ′1, X

′
2, X

′
3) is independent of Y (more

formally, this independence holds conditioned on any fixing of carefully chosen (X, Y)-
history), and X ′2 is close to uniform. So besides losing some entropy in Y and in X2, and
observing some error, we maintain the assumption we had initially about our input – the
second row X ′2 is uniform, and the joint distribution of the three rows is independent of
Y . Thus, in some sense we can “skip” to the iteration in which we give the lead to the
good row, which in our case is the second row. This easily generalizes to any number of
rows that precede the good row.

Analyzing the first iteration. Recall that A2 = Ext1 (Y, (X2)|s). Moreover, Y and
(X2)|s are independent, and H∞(Y) = k ≥ 11a. Since Ext1 is a strong seeded extractor
for entropy 2a, we have that

(A2, (X2)|s) ≈ (Ua, ·). 6

Note further that conditioned on any fixing of (X2)|s, the random variables A2 and X|h
are independent. Thus, we can apply Lemma 2.11 and conclude that

(A2, X|h) ≈ (Ua, ·). (4.15)

6Recall that our notation dictates that (X,Z1, . . . , Zr) ≈ (Y, ·) is a shorthand for (X,Z1, . . . , Zr) ≈
(Y,Z1, . . . , Zr)

63

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Recall that X ′2 = Ext3(X2, A2). We apply Lemma 4.6 to the (X, Y)-history X|h with
P = A2, M = X2 and the extractor Ext3. The hypothesis of Lemma 4.6 is met since A2

is a deterministic function of Y and X|h. Moreover, since Ext3 is an extractor for entropy
2h, and since

H̃∞ (X2 | (X|h)) ≥ `− 3h ≥ 10h,

Equation (4.2) of Lemma 4.6 holds. Therefore, Lemma 4.6 together with Equation (4.15)
imply that

(X ′2, A2, X|h) ≈ (Uh, ·).

Moreover, A2, X|h is an (X, Y)-history.
We now apply Lemma 4.7 with P = X ′2, J = (B1, A3) and the (X, Y)-history A2, X|h.

Since X ′2 is a deterministic function of X and A2 and since B1, A3 are deterministic
functions of Y and X|h, Lemma 4.7 implies that H1 = (B1, A2, A3, X|h) is an (X, Y)-
history and that

(X ′2,H1) ≈ (Uh, ·). (4.16)

Since each of B1, A2, A3 consists of a bits and since Y is independent of X|h, Lemma 2.3
and Lemma 2.6 imply that

H̃∞ (Y | H1) ≥ H̃∞ (Y | (X|h))− 3a = H∞ (Y)− 3a ≥ 8a. (4.17)

Similarly, conditioned on any fixing of X|h, the random variables B1, A2, A3 are deter-
ministic functions of Y , whereas X2 is a deterministic function of X. Hence, Lemma 2.6
implies that H̃∞ (X2 | H1) = H̃∞ (X2 | (X|h)) . Since X|h consists of 3h bits, we have
that

H̃∞ (X2 | H1) ≥ H∞ (X2)− 3h = 10h. (4.18)

This concludes the first iteration. Note that after the first iteration X ′2 is close to uni-
form (Equation (4.16)). Moreover, Y andX2 still have (enough) entropy (Equation (4.17),
Equation (4.18)).

Analyzing the second iteration. We reached the iteration in which we give the lead
to the good row – X2. We want to show that after this iteration, (X ′′2 , X

′′
1 , X ′′3) ≈ (Uh, X

′′
1 ,

X ′′3). Namely, the good row “gains its independence” in the iteration in which it takes
the lead.

We continue from Equation (4.16) and apply Lemma 4.8 to the (X, Y)-history H1,
with the 3× h matrix X ′ and the weak-source Y . Equation (4.5) of Lemma 4.8 holds by
Equation (4.17). Since h ≥ 5s, Equation (4.6) of Lemma 4.8 holds as well. Therefore,
Lemma 4.8 together with Equation (4.16) imply that

H′1 = (X ′, Z ′2, A
′
1, A

′
2, A

′
3, (X

′)|s,H1)

is an (X, Y)-history, and that

(B′2,H′1) ≈ (Ua, ·).

64

4.6 A Warm Up – Merging Three Rows

Furthermore, the third item of Lemma (4.8) together with Equation (4.17) imply that

H̃∞ (Y | H′1) ≥ H̃∞ (Y | H1)− 3a ≥ 5a. (4.19)

The fourth item of Lemma 4.8, applied with N = X2, together with Equation (4.18),
implies that

H̃∞ (X2 | H′1) ≥ H̃∞ (X2 | H1)− 3h ≥ 7h. (4.20)

We now apply Lemma 4.7 to the (X, Y)-history H′1 with P = B′2 and J = (X ′′1 , X
′′
3).

Lemma 4.7 is applicable since B′2 is a deterministic function of Y,X ′2, and the latter is
contained in H′1. Moreover, X ′′1 , X

′′
3 are deterministic functions of X,A′1, A

′
3, and A′1, A

′
3

are contained in H′1. Thus, Lemma 4.7 implies that

(B′2, X
′′
1 , X

′′
3 ,H′1) ≈ (Ua, ·), (4.21)

and that X ′′1 , X
′′
3 ,H′1 is an (X, Y)-history.

Recall that X ′′2 = Ext3(X2, B
′
2). We now apply Lemma 4.6 to the (X, Y)-history

X ′′1 , X
′′
3 ,H′1 with P = B′2, M = X2 and the extractor Ext3. The hypothesis of the lemma

holds since B′2 is a deterministic function of Y and X ′2, and the latter is contained in H′1.
By Equation (4.20) and Lemma 2.3, it holds that

H̃∞ (X2 | X ′′1 , X ′′3 ,H′1) ≥ H̃∞ (X2 | H′1)− 2h ≥ 5h. (4.22)

Since Ext3 is a strong seeded extractor for entropy 2h, Equation (4.2) of Lemma 4.6 holds.
Therefore, Lemma 4.6 together with Equation (4.21) imply that

(X ′′2 ,H2) ≈ (Uh, ·), (4.23)

where H2 = (B′2, X
′′
1 , X

′′
3 ,H′1) is an (X, Y)-history. In terms of entropy-loss,

H̃∞ (Y | H2) ≥ H̃∞ (Y | X ′′1 , X ′′3 ,H′1)− a = H̃∞ (Y | H′1)− a ≥ 4a, (4.24)

where the first inequality follows by Lemma 2.3 and the fact that |B′2| = a. The second
equality follows by Lemma 2.6 and the fact that conditioned on any fixing of H′1, the
random variables X ′′1 , X

′′
3 are deterministic functions of X, and are thus independent of

Y . The last inequality follows by Equation (4.19).

Similarly, since B′2 is independent of X2 conditioned on any fixing of H′1, we have that

H̃∞ (X2 | H2) = H̃∞ (X2 | X ′′1 , X ′′3 ,H′1) ≥ 5h, (4.25)

where the last inequality follows by Equation (4.22). Since X ′′1 , X
′′
3 are contained in H2,

this proves what we wanted for this iteration. Namely, after the second iteration, in
which the good row takes the lead, (X ′′2 , X

′′
1 , X

′′
3) ≈ (Uh, X

′′
1 , X

′′
3).

65

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Analyzing the third iteration. We now show that the independence of the good row
X ′′2 is “preserved” throughout the following iteration, where again another row takes the
lead. We continue from Equation (4.23). We note that conditioned on any fixing of H2,
the random variables A′′1, B

′′
3 are deterministic functions of Y (as X ′′1 , X

′′
3 are contained

in H2). On the other hand, conditioned on any fixing of H2, the random variable X ′′2 is
a deterministic function of X (as B′2 is contained in H2). Thus, by Lemma 4.7 applied
to the (X, Y)-history H2 with P = X ′′2 and J = (A′′1, B

′′
3), it holds that

(X ′′2 , A
′′
1, B

′′
3 ,H2) ≈ (Uh, ·).

Furthermore, A′′1, B
′′
3 ,H2 is an (X, Y)-history. By Lemma 2.3 and Equation (4.24), it

holds that
H̃∞ (Y | A′′1, B′′3 ,H2) ≥ H̃∞ (Y | H2)− 2a ≥ 2a. (4.26)

Recall thatA′′2 = Ext1(Y, (X ′′2)|s). We apply Lemma 4.6 to the (X, Y)-historyA′′1, B
′′
3 ,H2

with P = (X ′′2)|s, M = Y and the extractor Ext1. Since Ext1 is an extractor for entropy
2a, Equation (4.2) of Lemma 4.6 holds by Equation (4.26). Furthermore, (X ′′2)|s is a
deterministic function of X and B′2, which is contained in H2. Thus, the hypothesis of
Lemma 4.6 is met, and we get that

(A′′2, X
′′
2 , A

′′
1, B

′′
3 ,H2) ≈ (Ua, ·),

and X ′′2 , A
′′
1, B

′′
3 ,H2 is an (X, Y)-history. In terms of entropy-loss, since |X ′′2 | = h and

since A′′1, B
′′
3 are deterministic functions of Y conditioned on any fixing of X ′′1 , X

′′
3 , which

are contained in H2, Lemma 2.3 together with Equation (4.25) imply that

H̃∞ (X2 | X ′′2 , A′′1, B′′3 ,H2) ≥ H̃∞ (X2 | A′′1, B′′3 ,H2)−h = H̃∞ (X2 | H2)−h ≥ 4h. (4.27)

We now apply Lemma 4.7 to the (X, Y)-history X ′′2 , A
′′
1, B

′′
3 ,H2 with P = A′′2 and

J = X ′′′1 , X
′′′
3 . Recall that X ′′′1 = Ext3(X1, A

′′
1) and X ′′′3 = Ext3(X3, B

′′
3). Thus, conditioned

on any fixing of A′′1, B
′′
3 , it holds that X ′′′1 , X

′′′
3 are deterministic functions of X, whereas

A′′2 is a deterministic function of Y conditioned on any fixing of X ′′2 . Thus, Lemma 4.7
implies that

(A′′2, X
′′′
1 , X

′′′
3 ,H′2) ≈ (Ua, ·),

where H′2 = (X ′′2 , A
′′
1, B

′′
3 ,H2) is an (X, Y)-history. In terms of entropy-loss, by Equa-

tion (4.27) and Lemma 2.3, we have that

H̃∞ (X2 | X ′′′1 , X
′′′
3 ,H′2) ≥ H̃∞ (X2 | X ′′2 , A′′1, B′′3 ,H2)− 2h ≥ 2h. (4.28)

Recall thatX ′′′2 = Ext3(X2, A
′′
2). We apply Lemma 4.6 to the (X, Y)-historyX ′′′1 , X

′′′
3 ,H′2,

with P = A′′2, M = X2 and the extractor Ext3. Note that A′′2 is a deterministic function
of Y and X ′′2 , which is contained in H′2. Equation (4.2) of Lemma 4.6 follows by Equa-
tion (4.28) and the fact that Ext3 is an extractor for entropy 2h. Lemma 4.6 then implies
that

(X ′′′2 , A
′′
2, X

′′′
1 , X

′′′
3 ,H′2) ≈ (Uh, ·).

66

4.6 A Warm Up – Merging Three Rows

By Lemma 2.12 it follows that

(X ′′′2 , X
′′′
1 , X

′′′
3) ≈ (Uh, ·),

which concludes the proof of the claim.

As mentioned above, the proof of Theorem 4.5 readily follows by Claim 4.10.1.

4.6.1 Merging r rows – an overview

Generalizing the proof of the three-rows merger presented above to r > 3 rows is straight-
forward. Instead of three iterations, we can apply the algorithm above for r iterations,
where at the ith iteration we give the lead to row i. Working out the parameters, one can
show that this generalization works for ` = O(r4 · log n) and k = O(r3 · log log n). We
now explain how one can improve this, and construct a merger for ` = Õ(r2) · log n and
k = Õ(r) · log log n, as we obtain in the actual construction (Theorem 4.8).

For the purpose of constructing mergers with weak-seeds, this improvement, although
desired, is not crucial, especially when r is small. This, for example, is the case in
the construction of our three-source extractor. Thus, in these cases, the simpler merger
depicted above is sufficient. However, for our construction of LCBs the somewhat more
involved construction is necessary, and so in the rest of this section we give an informal
overview of the actual construction.

Consider the complete graph on r vertices, where vertex i ∈ [r] represents the ith

row of X. In the straightforward generalization of the three rows merger to r rows, we
(implicitly) considered r cuts of this graph, where the ith cut is ({i}, [r] \ {i}). The
construction in Theorem 4.5 guarantees that if Xi is good then after the ith iteration,
row i is uniform even given all other rows (and remains as such throughout the following
iterations). In the actual construction of our merger (and LCBs) we generalize this idea
and guarantee that the following stronger property holds. For any cut (S, Sc) of [r],
the ith row is independent of all rows with indices that are separated from i by the cut
(S, Sc). Notice that when we used the cuts of the form ({i}, [r] \ {i}), we knew that at
some iteration the good row g ∈ [r] is separated from all other rows, and moreover, we
knew on which side of the cut g will be (the side that contains the single vertex). By
inspecting the construction above, one can see that the algorithm used this second piece
of information. Indeed, in each iteration we gave the lead to the single row, namely, we
gave the single row the B variable, and all other rows got the A variables.

When considering general cuts (S, Sc), we no longer know which side of the cut con-
tains the good row g. Namely, to who should we give the B variables – to the rows in
S or to the rows in Sc. We solve this problem by applying the construction used above
twice, in a “flip-flop”. Namely, we first give the B variables to the rows in S and the A
variables to the rows in Sc, and then run one more round, giving the B variables to the
rows in Sc and the A variables to the rows in S. We only then proceed to the next cut
in the sequence.

Having the ability to use general cuts allows us to run for only log r iterations rather
than for r iterations. Indeed, instead of choosing r (highly unbalanced) cuts, and run for

67

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

r iterations, we use q = log r (efficiently computable) cuts S1, . . . , Sq with the following
property. For any two distinct i, j ∈ [r], there exists v ∈ [q] such that the cut (Sv, S

c
v) sep-

arates i from j. By working with these cuts, the same independence guarantee holds when
the algorithm terminates. Indeed, after the vth iteration, row i is uniform and indepen-
dent of all rows that were separated from i by at least one of the cuts (S1, S

c
1), . . . , (Sv, S

c
v).

By the property of S1, . . . , Sq it follows that after all q iterations were executed, row i is
uniform and independent of all other rows. Since we run for only q = log r iterations, as
apposed to r iterations, we obtain a multiplicative saving of roughly r/ log r in both k, `,
which yields the desired improvement.

Our construction of LCBs follows the same idea as the construction of the mergers
described above. The only difference is that the analysis is done “locally” on t rows, rather
than on r rows. The fact that we run for log r iterations introduces only logarithmic
factors of r into k, `, as apposed to polynomial factors.

4.7 Local Correlation Breakers

In this section we prove Theorem 4.1. We start by giving a more formal and complete
statement of the theorem.

Theorem 4.6. For all integers n, r, t and any ε > 0, there exists a poly(n, r, log(1/ε))-
time computable t-LCB

LCB :
(
{0, 1}`

)r × {0, 1}n → ({0, 1}m)r

for entropy k, with error ε, where

` = Θ
(
t2 · log

(nr
ε

)
· log r

)
,

m = Ω

(
`

t · log r

)
,

k = Ω

(
t · log(r) · log

(
r · log n

ε

))
.

In fact, we prove the following stronger theorem which readily implies Theorem 4.6.

Theorem 4.7. Let n, r, t be integers, and let ε > 0. Set

h = Θ
(
t · log

(nr
ε

))
,

` = Θ (ht · log r) = Θ
(
t2 · log

(nr
ε

)
· log r

)
.

There exists a function LCB :
(
{0, 1}`

)r×{0, 1}n → (
{0, 1}h

)r
with the following property.

Let X be an r × ` somewhere-random source. Assume that Xg is a good row of X. Let

68

4.7 Local Correlation Breakers

W j−1

LookAheadExt(W j−1, Y)

Aj−1 Bj−1

Ext3(X,)

(W ′)j−1

LookAheadExt((W ′)j−1, Y)

(A′)j−1 (B′)j−1

Ext3(X,)

W j

...

...

...

...

...

f
l
i
p

f
l
o
p

Figure 4.2: A schematic diagram of jth iteration of LCB.

69

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

I = {i1, . . . , it−1} ⊆ [r] \ {g}. Let Y be an (n, k)-weak-source that is independent of X,
such that

k = Ω

(
t · log(r) · log

(
r · log n

ε

))
. (4.29)

Let W̄ = LCB(X, Y). Then, there exists an (X, Y)-history H that contains {W̄i | i ∈ I},
such that the following holds:

•
(
W̄g,H

)
≈ε (Uh,H).

• H̃∞(Xg | H) ≥ 0.9 · `.

• H̃∞(Y | H) ≥ 0.9 · k. 7

• W̄g is a deterministic function of X and H.

Furthermore, for any i ∈ [r], W̄i in computable in time poly(n, t, log r, log(1/ε)).

Proof. Let ε′ = ε/(32r). We make use of the following building blocks for the construction
of LCB.

• Let LookAheadExt : {0, 1}h×{0, 1}n → {0, 1}a×{0, 1}a be the two-steps look-ahead
extractor from Section 4.4, set with error ε′ and a = Θ(log(`/ε′)). Note that this
choice of a satisfies the condition a ≥ Ω(log(h/ε′)) (since ` ≥ h), as required by the
two-steps look-ahead extractor. Note further that, by the choice of h, it holds that
h = Ω(t · log(n/ε′)). During the proof we apply Lemma 4.8 to somewhere-random
sources with t rows, for which this setting of h is sufficient.

• Let Ext3 : {0, 1}` × {0, 1}a → {0, 1}h be the strong seeded-extractor from Theo-
rem 2.2 for entropy 2h, set with error ε′. Note that a was chosen to be large enough
so that a seed of length a is sufficient for extracting entropy from length ` sources,
with error ε′.

• Let S1, . . . , Sq ⊆ [r] with the following property. For any two distinct i, j ∈ [r],
there exists v ∈ [q] such that |{i, j}∩Sv| = 1. We think of S1, . . . , Sq as a sequence
of cuts of the complete graph on vertex set [r]. The property above states that for
any two distinct vertices i, j ∈ [r], at least one of the cuts in the sequence separates
i from j, namely, either i ∈ Sv, j 6∈ Sv or j ∈ Sv, i 6∈ Sv, for some v ∈ [q]. We
note that such a sequence, with length q = dlog2 re, can be constructed efficiently
in the sense that given i ∈ [r] and v ∈ [q], one can determine whether or not i ∈ Sv
in time polylog(r). This can be done, for example, by taking Sv to be all i ∈ [r]
such that the vth bit in the binary expansion of i is 1. This specific sequence of
cuts was used in [Li13] for the construction of his multi-source extractor, though
any sequence with the above property will do.

7The constant 0.9 in the second and third items can be replaced by 1 − δ for any (not necessarily
constant) δ > 0, by taking ` to be 1/δ times the stated `, and by taking k to be log(1/δ)/δ times the
stated k.

70

4.7 Local Correlation Breakers

The algorithm LCB iteratively computes a sequence W 0,W 1, . . . ,W q of r×h matrices as
follows. First, we set W 0 = X|h. As depict in Figure 4.2, for any j ≥ 1, the matrix W j is
computed as follows, given W j−1. For each row i ∈ [r] of W j−1, we apply the two-steps
look-ahead extractor together with the weak-source Y to obtain(

Aj−1
i , Bj−1

i

)
= LookAheadExt

(
W j−1
i , Y

)
.

We then define

Cj−1
i =

 Aj−1
i , i ∈ Sj,

Bj−1
i , i 6∈ Sj.

Next, we compute
(W ′)j−1

i = Ext3

(
Xi, C

j−1
i

)
.

We apply the two-steps look-ahead extractor for the second time, as follows(
(A′)j−1

i , (B′)j−1
i

)
= LookAheadExt

(
(W ′)j−1

i , Y
)
,

and define

(C ′)j−1
i =

 (B′)j−1
i , i ∈ Sj,

(A′)j−1
i , i 6∈ Sj.

Note that the roles of A,B in this application of the two-steps look-ahead extractor were
flipped, compared to the previous application. Finally, the ith row of W j is defined by

W j
i = Ext3

(
Xi, (C

′)j−1
i

)
.

The output of LCB is then defined by LCB (X, Y) = W q .

We now turn to the analysis, starting with the running-time. First, note that row
W j
i is a function only of the corresponding rows W j−1

i , Xi and the weak-source Y . For
computing each row i ∈ [r], the algorithm runs for q = O(log r) iterations. In each
iteration it checks which side of the current cut contains i, and performs a constant
number of calls to various seeded extractors (Ext3 and the two extractors Ext1,Ext2 within
the two calls to LookAheadExt). Thus, the running-time for computing each output row
is poly(n, t, log r, log(1/ε)), as claimed.

For j = 1, . . . , q, define Ij ⊆ I by

Ij = {iv ∈ I : |{g, iv} ∩ Sj| = 1} .

That is, Ij contains all vertices in I that are separated from g by the cut Sj. We further
define I0 = ∅, and let Ij = ∪jj′=0Ij′ . Note that Ij is the set of vertices in I that are
separated from g by at least one of the cuts S1, . . . , Sj. By the property of the sequence
S1, . . . , Sq, we have that Iq = I. We prove the following claim by induction on j.

Claim 4.10.2. There exists an (X, Y)-history Hj such that the following holds:

71

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

• Hj contains
{
W j
i | i ∈ Ij

}
.

• Hj contains
{

(C ′)j−1
i | i ∈ I ∪ {g}

}
for all j ≥ 1.

•
(
W j
g ,Hj

)
≈εj (Uh,Hj), where ε0 = 0 and εj ≤ 2εj−1 + 16ε′ for all j ≥ 1.

• H̃∞(Xg | Hj) ≥ `− 5htj.

• H̃∞(Y | Hj) ≥ k − 5atj.

Proof of Claim 4.10.2. We prove the claim by induction on j. The claim readily follows
for j = 0 with an empty (X, Y)-history H0. Consider j ≥ 1 and assume the correctness
of the claim for j − 1. By the induction hypothesis, we have that(

W j−1
g ,Hj−1

)
≈εj−1

(Uh, ·) .
Recall that

W j−1
g =

 (Xg) |h, j = 1;

Ext3

(
Xg, (C

′)j−2
g

)
, j > 1.

If j = 1 then clearly W j−1
g is a deterministic function of X. For j > 1, by the induction

hypothesis, Hj−1 contains (C ′)j−2
g and so W j−1

g is a deterministic function of X,Hj−1.

Moreover, by the induction hypothesis {W j−1
i | i ∈ Ij−1} are all contained in Hj−1.

Since Cj−1
i is a deterministic function of W j−1

i and Y , we have that {Cj−1
i | i ∈ Ij−1}

are all deterministic functions of Hj−1 and Y . Thus, we can apply Lemma 4.7 to the
(X, Y)-history Hj−1 with P = W j−1

g and J = {Cj−1
i | i ∈ Ij−1}, and conclude that(

W j−1
g ,

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
≈εj−1

(Uh, ·) , (4.30)

and that
{
Cj−1
i | i ∈ Ij−1

}
,Hj−1 is an (X, Y)-history. In terms of entropy-loss, by

Lemma 2.3 and by the induction hypothesis,

H̃∞

(
Y |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
≥ H̃∞ (Y | Hj−1)− |Ij−1| · a

≥ k − 5atj + 4at+ a, (4.31)

where we used the fact that |Ij−1| ≤ |I| ≤ t− 1 and that |Cj−1
i | = a for all i ∈ Ij−1. As

for the entropy of Xg, we have that

H̃∞

(
Xg |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
= H̃∞ (Xg | Hj−1) ≥ `− 5ht(j − 1), (4.32)

where the first equality holds by Lemma 2.6 and by the induction hypothesis. Indeed, the
induction hypothesis implies that all random variables

{
W j−1
i | i ∈ Ij−1

}
are contained

in Hj−1. Since Cj−1
i is a deterministic function of W j−1

i and Y , it holds that conditioned
on any fixing of Hj−1, the random variables

{
Cj−1
i | i ∈ Ij−1

}
are deterministic functions

of Y , and thus are independent of Xg. The second inequality follows by the induction
hypothesis.

We proceed with the analysis by considering two cases, according to whether or not
g ∈ Sj.

72

4.7 Local Correlation Breakers

Case 1: g ∈ Sj. Recall that Aj−1
g = Ext1(Y, (W j−1

g)|s). We apply Lemma 4.6 to the

(X, Y)-history
{
Cj−1
i | i ∈ Ij−1

}
,Hj−1, with P =

(
W j−1
g

)
|s, M = Y and the extractor

Ext1. The hypothesis of Lemma 4.6 is met since, as explained above, W j−1
g is a deter-

ministic function of X and Hj−1. Furthermore, Equation (4.2) of Lemma 4.6 follows by
Equation (4.31), the fact that Ext1 is a strong seeded extractor for entropy 2a with error
ε′, and our assumption on k, namely, Equation (4.29). Thus, Lemma 4.6 together with
Equation (4.30) imply that (

Aj−1
g ,H′j−1

)
≈εj−1+2ε′ (Ua, ·) ,

where
H′j−1 =

(
W j−1
g ,

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
is an (X, Y)-history. Note that we added W j−1

g rather than (W j−1
g)|s to H′j−1. This can

be done either by applying Lemma 4.7 or by considering the extractor Ext′1 that takes
W j−1
g as the seed, ignore the length h− s suffix of it and use (W j−1

g)|s as a seed for Ext1.
In terms of entropy-loss,

H̃∞
(
Xg | H′j−1

)
≥ H̃∞

(
Xg |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
−
∣∣W j−1

g

∣∣ ≥ `−5htj+5ht−h, (4.33)

where the first inequality follows by Lemma 2.3, and the second inequality follows by
Equation (4.32).

We now apply Lemma 4.7 to the (X, Y)-history H′j−1, with P = Aj−1
g and

J =
{

(W ′)j−1
i | i ∈ Ij−1

}
∪
{
W j−1
i | i ∈ I \ Ij−1

}
.

To see that this application of Lemma 4.7 is valid, note that Aj−1
g is a deterministic

function of Y and W j−1
g , and the latter is contained in H′j−1 – the history to which we

apply the lemma. On the other hand, each of the random variables in
{

(W ′)j−1
i | i ∈ Ij−1

}
is a deterministic function of X and

{
Cj−1
i | i ∈ Ij−1

}
, all of which are contained in H′j−1.

Moreover, as explained above,
{
W j−1
i | i ∈ I \ Ij−1

}
are all deterministic functions of X

and Hj−1 (this was shown for i = g but can be easily shown to hold for all i ∈ I ∪ {g}).
Thus, Lemma 4.7 implies that(

Aj−1
g ,

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
≈εj−1+2ε′ (Ua, ·) ,

and that
{

(W ′)j−1
i | i ∈ Ij−1

}
,
{
W j−1
i | i ∈ I \ Ij−1

}
,H′j−1 is an (X, Y)-history. In terms

of entropy-loss, Equation (4.33) together with Lemma 2.3 imply that

H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
≥ H̃∞

(
Xg | H′j−1

)
− |I| · h

≥ `− 5htj + 4ht. (4.34)

Recall that (W ′)j−1
g = Ext3

(
Xg, C

j−1
g

)
. Since g ∈ Sj it holds that Cj−1

g = Aj−1
g .

We apply Lemma 4.6 to the (X, Y)-history
{

(W ′)j−1
i | i ∈ Ij−1

}
,
{
W j−1
i | i ∈ I \ Ij−1

}
,

73

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

H′j−1, with P = Aj−1
g = Cj−1

g , M = Xg and the extractor Ext3. The hypothesis of
Lemma 4.6 is met since Aj−1

g is a deterministic function of Y and W j−1
g , and the latter

in contained in the (X, Y)-history to which we apply the lemma. Furthermore, Equa-
tion (4.2) of Lemma 4.6 follows by Equation (4.34) and our hypothesis on k, namely,
Equation (4.29), and since Ext3 is a strong seeded extractor for entropy 2h with error ε′.
Therefore, Lemma 4.6 implies that(

(W ′)j−1
g ,H′′j−1

)
≈εj−1+4ε′ (Uh, ·) ,

where
H′′j−1 =

(
Aj−1
g ,

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
.

In terms of entropy-loss,

H̃∞
(
Y | H′′j−1

)
≥ H̃∞

(
Y |

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
− a

= H̃∞
(
Y | H′j−1

)
− a

= H̃∞

(
Y |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
− a

≥ k − 5atj + 4at, (4.35)

where the first inequality follows by Lemma 2.3, and since |Aj−1
g | = a. The second

equality follows by Lemma 2.6, which is applicable since conditioned on any fixing of the
random variables

{
Cj−1
i | i ∈ Ij−1

}
, all of which are all contained in H′j−1, the random

variables
{

(W ′)j−1
i | i ∈ Ij−1

}
are deterministic functions of X, and in particular are

independent of Y . Moreover, as explained above, conditioned on any fixing of H′j−1,

the random variables
{
W j−1
i | i ∈ I \ Ij−1

}
are deterministic functions of X. The third

equality follows by Lemma 2.6 as W j−1
g is a deterministic function of X and Hj−1. The

last inequality follows by Equation (4.31).
We now apply Lemma 4.7 to the (X, Y)-history H′′j−1, with P = (W ′)j−1

g and

J =
{

(C ′)j−1
i | i ∈ Ij−1

}
∪
{
Cj−1
i | i ∈ I \ Ij−1

}
.

This application of Lemma 4.7 is valid since (W ′)j−1
g is a deterministic function of

X,Cj−1
g , and Cj−1

g is contained in the history to which we apply the lemma. This
is because Cj−1

g = Aj−1
g since g ∈ Sj. On the other hand, each random variable

in
{

(C ′)j−1
i | i ∈ Ij−1

}
is a deterministic function of Y and (W ′)j−1

i , and all of the

random variables
{

(W ′)j−1
i | i ∈ Ij−1

}
are contained in the H′′j−1. Furthermore, each

of the random variables in
{
Cj−1
i | i ∈ I \ Ij−1

}
is a deterministic function of Y and{

W j−1
i | i ∈ I \ Ij−1

}
, and the latter random variables are all contained in H′′j−1. Thus,

Lemma 4.7 implies that (
(W ′)j−1

g ,H′′′j−1

)
≈εj−1+4ε′ (Uh, ·) , (4.36)

where
H′′′j−1 =

({
(C ′)j−1

i

}
i∈Ij−1

,
{
Cj−1
i

}
i∈I\Ij−1

,H′′j−1

)
74

4.7 Local Correlation Breakers

is an (X, Y)-history. By Lemma 2.3, Equation (4.35) and the fact that |I| = t − 1, it
holds that

H̃∞
(
Y | H′′′j−1

)
≥ H̃∞

(
Y | H′′j−1

)
− |I| · a ≥ k − 5atj + 3at+ a. (4.37)

Note that all random variables
{
Cj−1
i | i ∈ I ∪ {g}

}
are contained in H′′′j−1. Indeed,{

Cj−1
i | i ∈ I \ Ij−1

}
are contained inH′′′j−1 by definition. Moreover, the random variables{

Cj−1
i | i ∈ Ij−1

}
are contained in H′j−1 which in turn is contained in H′′′j−1. Finally,

since g ∈ Sj, it holds that Cj−1
g = Aj−1

g , and Aj−1
g is contained in H′′j−1, and so it is also

contained in H′′′j−1.
We apply Lemma 4.8 to the (X, Y)-historyH′′′j−1, withW (in the notation of Lemma 4.8)

equals to rows I∪{g} of (W ′)j−1. The hypothesis of Lemma 4.8 is met since these rows of
(W ′)j−1 are deterministic functions of X and

{
Cj−1
i | i ∈ I ∪ {g}

}
which, by the above,

are contained in H′′′j−1. Furthermore, Equation (4.5) of Lemma 4.8 follows by Equa-
tion (4.37), and Equation (4.6) follows by our choice of h. Lemma 4.8 together with
Equation (4.36) imply that(

(B′)j−1
g ,H′′′′j−1

)
≈2εj−1+14ε′ (Ua, ·) ,

where

H′′′′j−1 =
({

(W ′)j−1
i

}
i∈I∪{g} , (Z

′)j−1
g ,

{
(A′)j−1

i

}
i∈I∪{g} ,

{(
(W ′)j−1

i

)
|s
}
i∈I∪{g} ,H

′′′
j−1

)
is an (X, Y)-history. Moreover, by the third item of Lemma 4.8 and Equation (4.37), we
have that

H̃∞
(
Y | H′′′′j−1

)
≥ H̃∞

(
Y | H′′′j−1

)
− |I ∪ {g}| · a ≥ k − 5atj + 2at+ a. (4.38)

As for the entropy-loss of Xg, it holds that

H̃∞
(
Xg | H′′′′j−1

)
≥ H̃∞

(
Xg | H′′′j−1

)
− |I ∪ {g}| · h

= H̃∞
(
Xg | H′′′j−1

)
− th

= H̃∞
(
Xg | H′′j−1

)
− th

= H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij−1

,
{
W j−1
i

}
i∈I\Ij−1

,H′j−1

)
− th

≥ H̃∞
(
Xg | H′j−1

)
− (2t− 1)h

≥ `− 5htj + 2ht+ h, (4.39)

where the first inequality follows by the fourth item of Lemma 4.8, with N = Xg. The
second equality follows since |I ∪ {g}| = t. The third equality follows by Lemma 2.6 and
the fact that conditioned on any fixing of H′′j−1, all random variables

{
(C ′)j−1

i | i ∈ Ij−1

}
,{

Cj−1
i | i ∈ I \ Ij−1

}
are deterministic functions of Y . The fourth equality follows by

Lemma 2.6 since Aj−1
g is a deterministic function of Y conditioned on any fixing of

75

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

H′j−1. The penultimate inequality follows by Lemma 2.3. The last inequality follows by
Equation (4.34).

Recall that
{

(C ′)j−1
i | i ∈ Ij−1

}
are contained in H′′′′j−1, as these random variables are

already contained in H′′′j−1. However, due to the application of Lemma 4.8 above, we have

that
{

(C ′)j−1
i | i ∈ Ij

}
are all contained in H′′′′j−1. To see this, note that after the appli-

cation of the two-steps look-ahead extractor,
{

(A′)j−1
i | i ∈ I ∪ {g}

}
are all contained in

H′′′′j−1. However, (A′)j−1
i = (C ′)j−1

i for i 6∈ Sj, which is equivalent to i ∈ Ij as g ∈ Sj.

Since Ij = Ij−1∪ Ij, it follows that (C ′)j−1
i is contained in H′′′′j−1 for all i ∈ Ij, as claimed.

We apply Lemma 4.7 to the (X, Y)-historyH′′′′j−1 with P = (B′)j−1
g and J =

{
W j
i | i ∈ Ij

}
,

and conclude that (
(B′)j−1

g ,
{
W j
i

}
i∈Ij

,H′′′′j−1

)
≈2εj−1+14ε′ (Ua, ·) .

This application of Lemma 4.7 is valid since (B′)j−1
g is a deterministic function of Y and

(W ′)j−1
g , which is contained in H′′′′j−1. Furthermore, the random variables

{
W j
i | i ∈ Ij

}
are deterministic functions of X and

{
(C ′)ji | i ∈ Ij

}
which, by the above, are also con-

tained in H′′′′j−1. By Equation (4.39) and Lemma 2.3, it holds that

H̃∞

(
Xg |

{
W j
i

}
i∈Ij

,H′′′′j−1

)
≥ H̃∞

(
Xg | H′′′′j−1

)
− (t− 1)h ≥ `− 5htj + ht+ 2h. (4.40)

We apply Lemma 4.6 to the (X, Y)-history
{
W j
i | i ∈ Ij

}
,H′′′′j−1 with P = (B′)j−1

g ,
M = Xg and the extractor Ext3. The hypothesis of Lemma 4.6 is met since (B′)j−1

g is
a deterministic function of Y and (W ′)j−1

g , which is contained H′′′′j−1. Moreover, Equa-

tion (4.2) of Lemma 4.6 follows by Equation (4.40). Since W j
i = Ext3

(
Xi, (C

′)j−1
i

)
, and

since (C ′)j−1
g = (B′)j−1

g (as g ∈ Sj), Lemma 4.6 implies that(
W j
g , (B

′)j−1
g ,

{
W j
i

}
i∈Ij

,H′′′′j−1

)
≈2εj−1+16ε′ (Uh, ·) .

Finally, we apply Lemma 4.7 to the (X, Y)-history (B′)j−1
g ,

{
W j
i | i ∈ Ij

}
, H′′′′j−1, with

P = W j
g and J =

{
(C ′)j−1

i | i ∈ I \ Ij
}

. This application of Lemma 4.7 is valid since W j
g

is a deterministic function of X and (C ′)j−1
g , which is contained in the history to which we

apply the lemma, since (C ′)j−1
g = (B′)j−1

g (recall that g ∈ Sj). Moreover, the random vari-

ables
{

(C ′)j−1
i | i ∈ I \ Ij

}
are deterministic functions of Y and

{
(W ′)j−1

i | i ∈ I \ Ij
}

,
all of which are contained in H′′′′j−1. Thus, Lemma 4.7 implies that(

W j
g ,Hj

)
≈2εj−1+16ε′ (Uh, ·) ,

where
Hj =

({
(C ′)j−1

i

}
i∈I\Ij

, (B′)j−1
g ,

{
W j
i

}
i∈Ij

,H′′′′j−1

)
is an (X, Y)-history. This proves the third item of the claim. Note that Hj contains{
W j
i | i ∈ Ij

}
, which proves the first item of the claim.

76

4.7 Local Correlation Breakers

As for the second item, as proved above,
{

(C ′)j−1
i | i ∈ Ij

}
are contained in H′′′′j−1

and therefore also contained in Hj. Moreover, by definition,
{

(C ′)j−1
i | i ∈ I \ Ij

}
are

contained in Hj, and so all random variables
{

(C ′)j−1
i | i ∈ I

}
are contained in Hj. Fi-

nally, since g ∈ Sj it holds that (C ′)j−1
g = (B′)j−1

g , and the latter is contained in Hj. To

summarize, all random variables
{

(C ′)j−1
i | i ∈ I ∪ {g}

}
are contained in Hj, and so the

second item of the claim follows.
The fourth item of the claim follows by Equation (4.40), Lemma 2.6 and the fact that

(B′)j−1
g and

{
(C ′)j−1

i | i ∈ I \ Ij
}

are all deterministic functions of Y and
{

(W ′)j−1
i | i ∈ I ∪ {g}

}
.

As for the fifth item,

H̃∞ (Y | Hj) ≥ H̃∞

(
Y |

{
W j
i

}
i∈Ij

,H′′′′j−1

)
− (|I \ Ij|+ 1) · a

= H̃∞
(
Y | H′′′j−1

)
− (|I \ Ij|+ 1) · a

≥ k − 5atj + at+ a,

where the first inequality follows by Lemma 2.3. The second equality follows by Lemma 2.6,
which is applicable as conditioned on any fixing of H′′′′j−1, the random variables {W j

i | i ∈
Ij} are deterministic functions of X. Indeed, W j

i is a deterministic function of X and
(C ′)j−1

i , and as shown above, all random variables {(C ′)j−1
i | i ∈ Ij} are contained in

H′′′′j−1. The last inequality follows by Equation (4.38).

Case 2: g 6∈ Sj. We continue from Equation (4.30), and apply Lemma 4.8 to the
(X, Y)-history

{
Cj−1
i | i ∈ Ij−1

}
,Hj−1, and rows I ∪ {g} of W j−1. We note that the

hypothesis of Lemma 4.8 is met. Indeed, as shown above, for any i ∈ I ∪ {g}, W j−1
i is a

deterministic function of X and Hj−1. Moreover, Equation (4.5) of Lemma 4.8 follows by
Equation (4.31), and Equation (4.6) follows by our choice of h. Therefore, by Lemma 4.8
and Equation (4.30) we have that(

Bj−1
g ,H′j−1

)
≈2εj−1+6ε′ (Ua, ·) ,

where

H′j−1 =
({
W j−1
i

}
i∈I∪{g} , Z

j−1
g ,

{
Aj−1
i

}
i∈I∪{g} ,

{(
W j−1
i

)
|s
}
i∈I∪{g} ,

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
is an (X, Y)-history. Furthermore, by the third item of Lemma 4.8 and by Equation (4.31)
it holds that

H̃∞
(
Y | H′j−1

)
≥ H̃∞

(
Y |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
−|I ∪ {g}|·a ≥ k−5atj+3at+a. (4.41)

The fourth item of Lemma 4.8, with N = XG, together with Equation (4.32) imply that

H̃∞
(
Xg | H′j−1

)
≥ H̃∞

(
Xg |

{
Cj−1
i

}
i∈Ij−1

,Hj−1

)
−|I ∪ {g}|·h ≥ `−5htj+4ht. (4.42)

Note that
{
Cj−1
i | i ∈ Ij−1

}
are all contained in H′j−1 even prior to the application

of the two-steps look-ahead extractor. But in fact, after this application, all random

77

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

variables in
{
Cj−1
i | i ∈ Ij

}
are contianed in H′j−1. To see this, recall that Aj−1

i = Cj−1
i

for all i ∈ Sj. Furthermore, i ∈ Sj ⇐⇒ i ∈ Ij as g 6∈ Sj. Since Ij = Ij−1 ∪ Ij, and since
{Aj−1

i | i ∈ I ∪{g}} are all contained in H′j−1, the claimed assertion follows. Namely, for

all i ∈ Ij, the random variable Cj−1
i is contained in H′j−1.

We now apply Lemma 4.7 to the (X, Y)-history H′j−1, with P = Bj−1
g and J ={

(W ′)j−1
i | i ∈ Ij

}
. Lemma 4.7 is applicable as Bj−1

g is a deterministic function of Y
and W j−1

g , which is contained in H′j−1. Moreover, by the above, for each i ∈ Ij, the

random variable Cj−1
i is contained inH′j−1, and so

{
(W ′)j−1

i | i ∈ Ij
}

are all deterministic
functions of X and H′j−1. Thus, Lemma 4.7 implies that(

Bj−1
g ,

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
≈2εj−1+6ε′ (Ua, ·) .

In terms of entropy-loss, Lemma 2.3 together with Equation (4.42) imply that

H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
≥ H̃∞

(
Xg | H′j−1

)
−|Ij| ·h ≥ `−5htj+3ht+h. (4.43)

We now apply Lemma 4.6 to the (X, Y)-history
{

(W ′)j−1
i | i ∈ Ij

}
, H′j−1, with P =

Bj−1
g , M = Xg and the extractor Ext3. Recall that (W ′)j−1

g = Ext3

(
Xg, C

j−1
g

)
. Since

g 6∈ Sj, it follows that Cj−1
g = Bj−1

g . Thus, Lemma 4.6 implies that(
(W ′)j−1

g , Bj−1
g ,

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
≈2εj−1+8ε′ (Uh, ·) .

Lemma 4.6 is applicable since Bj−1
g is a deterministic function of Y and W j−1

g , which is
contained inH′j−1. Furthermore, Equation (4.2) of Lemma 4.6 follows by Equation (4.43).
In terms of entropy-loss, we have that

H̃∞

(
Y | Bj−1

g ,
{

(W ′)j−1
i

}
i∈Ij

,H′j−1

)
≥ H̃∞

(
Y |

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
− a

= H̃∞
(
Y | H′j−1

)
− a

≥ k − 5atj + 3at, (4.44)

where the first inequality follows by Lemma 2.3 and the fact that
∣∣Bj−1

g

∣∣ = a. The
second equality follows by Lemma 2.6 and the fact that conditioned on any fixing ofH′j−1,

each random variable in
{

(W ′)j−1
i | i ∈ Ij

}
is a deterministic function of X. Indeed, as

shown above,
{
Cj−1
i | i ∈ Ij

}
are all contained in H′j−1. The last inequality follows by

Equation (4.41).
We now apply Lemma 4.7 to the (X, Y)-history Bj−1

g ,
{

(W ′)j−1
i | i ∈ Ij

}
, H′j−1, with

P = (W ′)j−1
g and

J =
{

(C ′)j−1
i | i ∈ Ij

}
∪
{
Cj−1
i | i ∈ I \ Ij

}
.

Lemma 4.7 is applicable since (W ′)j−1
g is a deterministic function of X and Cj−1

g = Bj−1
g ,

which is contained inH′j−1. On the other hand, each random variable in
{

(C ′)j−1
i | i ∈ Ij

}
is a deterministic function of Y and

{
(W ′)j−1

i | i ∈ Ij
}

, and the latter are contained in the

78

4.7 Local Correlation Breakers

history to which we apply the lemma. Similarly, every random variable in
{
Cj−1
i | i ∈ I \ Ij

}
is a deterministic function of Y and

{
W j−1
i | i ∈ I \ Ij

}
, and the latter are contained in

H′j−1. We conclude that (
(W ′)j−1

g ,H′′j−1

)
≈2εj−1+8ε′ (Uh, ·) ,

where
H′′j−1 =

({
(C ′)j−1

i

}
i∈Ij

,
{
Cj−1
i

}
i∈I\Ij

, Bj−1
g ,

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
.

In terms of entropy, Equation (4.44) together with Lemma 2.3 imply that

H̃∞
(
Y | H′′j−1

)
≥ H̃∞

(
Y | Bj−1

g ,
{

(W ′)j−1
i

}
i∈Ij

,H′j−1

)
− |I| · a

≥ k − 5atj + 2at+ a. (4.45)

Recall that (A′)j−1
g = Ext1(Y, ((W ′)j−1

g)|s). We apply Lemma 4.6 to the (X, Y)-history
H′′j−1 with P = ((W ′)j−1

g)|s, M = Y and the extractor Ext1. Lemma 4.6 is applicable since
(W ′)j−1

g is a deterministic function of X and Cj−1
g = Bj−1

g , which is contained in H′′j−1.
Furthermore, Equation (4.2) of Lemma 4.6 holds by Equation (4.45). Thus, Lemma 4.6
implies that (

(A′)j−1
g , (W ′)j−1

g ,H′′j−1

)
≈2εj−1+10ε′ (Ua, ·) .

In terms of entropy-loss, we have that

H̃∞
(
Xg | (W ′)j−1

g ,H′′j−1

)
≥ H̃∞

(
Xg | H′′j−1

)
− h

= H̃∞

(
Xg |

{
(W ′)j−1

i

}
i∈Ij

,H′j−1

)
− h

≥ `− 5htj + 3ht, (4.46)

where the first inequality follows by Lemma 2.3 and the fact that
∣∣(W ′)j−1

g

∣∣ = h. The
second equality follows by Lemma 2.6 which is applicable as conditioned on any fixing
of H′j−1, all random variables

{
(C ′)j−1

i | i ∈ Ij
}

,
{
Cj−1
i | i ∈ I \ Ij

}
and Bj−1

g are deter-
ministic functions of Y . The last inequality follows by Equation (4.43).

Next we apply Lemma 4.7 to the (X, Y)-history (W ′)j−1
g ,H′′j−1, with P = (A′)j−1

g and

J =
{
W j
i | i ∈ Ij

}
∪
{

(W ′)j−1
i | i ∈ I \ Ij

}
to conclude that(

(A′)j−1
g ,

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
≈2εj−1+10ε′ (Ua, ·) .

This application of Lemma 4.7 is valid since (A′)j−1
g is a deterministic function of Y

and (W ′)j−1
g , which is contained in the history to which we apply the lemma. On the

other hand,
{
W j
i | i ∈ Ij

}
are all deterministic functions of X and

{
(C ′)ji | i ∈ Ij

}
, all of

which are contained in H′′j−1. Furthermore, all random variables
{

(W ′)j−1
i | i ∈ I \ Ij

}
79

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

are deterministic functions of X and
{
Cj−1
i | i ∈ I \ Ij

}
, and these random variables are

contained in H′′j−1. As for the entropy-loss, Lemma 2.3 and Equation (4.46) imply that

H̃∞

(
Xg |

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
≥ H̃∞

(
Xg | (W ′)j−1

g ,H′′j−1

)
− |I| · h

≥ `− 5htj + 2ht+ h. (4.47)

We apply Lemma 4.6 to the (X, Y)-history
{
W j
i | i ∈ Ij

}
,
{

(W ′)j−1
i | i ∈ {g} ∪ I \ Ij

}
,

H′′j−1, with P = (A′)j−1
g , M = Xg and the extractor Ext3. Recall thatW j

g = Ext3

(
Xg, (C

′)j−1
g

)
.

Since g 6∈ Sj, we have that (C ′)j−1
g = (A′)j−1

g . Thus, Lemma 4.6 implies that(
W j
g , (A

′)j−1
g ,

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
≈2εj−1+12ε′ (Uh, ·) .

We note that Lemma 4.6 is applicable since (A′)j−1
g is a deterministic function of Y and

(W ′)j−1
g , which is contained in the history to which we apply the lemma. Furthermore,

Equation (4.2) of Lemma 4.6 follows by Equation (4.47).
We apply Lemma 4.7 to the (X, Y)-history (A′)j−1

g ,
{
W j
i | i ∈ Ij

}
,
{

(W ′)j−1
i | i ∈ {g} ∪ I \ Ij

}
,

H′′j−1, with P = W j
g and J =

{
(C ′)j−1

i | i ∈ I \ Ij
}

. Lemma 4.7 is applicable since
W j
g is a deterministic function of X and (C ′)j−1

g . Recall that (C ′)j−1
g = (A′)j−1

g as
g 6∈ Sj, and so (C ′)j−1

g is contained in the history to which we apply the lemma. More-

over, all random variables
{

(C ′)j−1
i | i ∈ I \ Ij

}
are deterministic functions of Y and{

(W ′)j−1
i | i ∈ I \ Ij

}
and these random variables are contained in the history to which

we apply the lemma. Therefore, Lemma 4.7 implies that(
W j
g ,Hj

)
≈2εj−1+12ε′ (Uh, ·) ,

where

Hj =
({

(C ′)j−1
i

}
i∈I\Ij

, (A′)j−1
g ,

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
.

This proves the third item of the claim. The first item of the claim holds since Hj con-
tains

{
W j
i | i ∈ Ij

}
. To see that the second item follows, recall that

{
(C ′)j−1

i | i ∈ Ij
}

are contained in H′′j−1. By the last application of Lemma 4.7, the random variables{
(C ′)j−1

i | i ∈ I \ Ij
}

are also contained in Hj. Finally, since g 6∈ Sj we have that

(C ′)j−1
g = (A′)j−1

g , which is also contained in Hj. Thus,
{

(C ′)j−1
i | i ∈ I ∪ {g}

}
are

all contained in Hj, and the second item of the claim holds.
The fourth item follows by Equation (4.47), Lemma 2.6 and the fact that (A′)j−1

g is a

deterministic function of Y conditioned on the fixing of (W ′)j−1
g , and

{
(C ′)j−1

i | i ∈ I \ Ij
}

are deterministic functions of Y conditioned on the fixing of
{

(W ′)j−1
i | i ∈ I \ Ij

}
. The

fifth item follows since

H̃∞ (Y | Hj) ≥ H̃∞

(
Y |

{
W j
i

}
i∈Ij

,
{

(W ′)j−1
i

}
i∈{g}∪I\Ij

,H′′j−1

)
− (1 + |I \ Ij|) · a

= H̃∞
(
Y | H′′j−1

)
− (1 + |I \ Ij|) · a

≥ k − 5atj + at+ a,

80

4.8 Mergers with Weak-Seeds

where the first inequality follows by Lemma 2.3. The second equality follows by Lemma 2.6
and the fact that conditioned on any fixing of H′′j−1, the random variables

{
W j
i | i ∈ Ij

}
,{

(W ′)j−1
i | i ∈ {g} ∪ I \ Ij

}
are deterministic functions of X. The third inequality fol-

lows by Equation (4.45).
This concludes the proof for the case g 6∈ Sj. The proof of the claim then follows.

By Claim 4.10.2 applied with j = q, we have that H , Hq contains
{
W j
i | i ∈ I

}
as

I = Iq. Furthermore,

•
(
W q
g ,H

)
≈ε (Uh,H). This follows since

εq ≤ (2q − 1) · 16 · ε′ ≤ 32r · ε′ ≤ ε,

where the second inequality follows since q = dlog2 re, and the last inequality holds
by our choice of ε′.

• H̃∞(Xg | H) ≥ `− 5htq ≥ 0.9`.

• H̃∞(Y | H) ≥ k − 5atq ≥ 0.9k.

Since W̄ = W q, the first three items of the theorem follows. As for the fourth item, recall
that W̄g = W q

g = Ext3

(
Xg, (C

′)q−1
g

)
. The second item of the claim states that (C ′)q−1

g

is contained in Hq, and so W q
g is a deterministic function of X and H, as stated. This

concludes the proof of the theorem.

4.8 Mergers with Weak-Seeds

In this section we prove Theorem 4.3 using Theorem 4.7. We start by giving a formal
definition of mergers with weak-seeds using the definition of somewhere-random sources.
We further define strong mergers with weak-seeds. We then give a complete and formal
restatement of Theorem 4.3 and present its proof.

Definition 4.11 (Mergers with weak-seeds). A function

Merg :
(
{0, 1}`

)r × {0, 1}n → {0, 1}m
is called a merger with weak-seeds for entropy k, with error ε, if the following holds. For
any r× ` somewhere-random source X and an independent (n, k)-weak-source Y , it holds
that

Merg(X, Y) ≈ε Um.

We say that Merg is strong if

(Merg(X, Y), Y) ≈ε (Um, Y) .

81

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Theorem 4.8. For all integers n, r and for any ε > 0, there exists a poly(n, r, log(1/ε))-
time computable strong merger with weak-seeds for entropy k, with error ε,

Merg :
(
{0, 1}`

)r × {0, 1}n → {0, 1}m,
with

` = Θ
(
r2 · log(r) · log

(nr
ε

))
,

k = Ω

(
r · log(r) · log

(
r · log n

ε

))
,

m = `/(2r).

Before proving the theorem, we remark that if one is willing to output Ω(`/(r log r))
bits rather than Ω(`/r), one can construct a merger with weak-seeds using the LCB from
Theorem 4.7 in a slightly simpler way. Indeed, one can compute W = LCB(X, Y) with
t = r and then output Merg(X, Y) = ⊕ri=1Wi. That is, one can skip the extra “round”
that has the purpose of increasing the output length.

Proof of Theorem 4.8. We first describe the construction of Merg, and then turn to the
analysis. To this end, we need the following building blocks.

• Let LCB :
(
{0, 1}`

)r × {0, 1}n → (
{0, 1}h

)r
be the t-LCB from Theorem 4.7, set

with t = r and error ε. Note that the hypothesis of Theorem 4.7 is met by our
choice of `, k. Furthermore, by Theorem 4.7, h = Θ(r · log(nr/ε)).

• Set s = Θ(log(`/ε)) = Θ(log(r · log(n)/ε)). Let Ext4 : {0, 1}n×{0, 1}h → {0, 1}s be
the strong seeded extractor from Theorem 2.2 for entropy 2s, with error ε. Note
that h = Ω(log(n/ε)), and so a seed of length h suffices for Theorem 2.2.

• Let Ext5 : {0, 1}`×{0, 1}s → {0, 1}m be the extractor from Theorem 2.2 for entropy
2m, set to extract with error ε. Note that s was chosen so that a seed of length s
suffices for Theorem 2.2.

The function Merg is defined as follows. First, we compute the r × h matrix W =
LCB(X, Y). For each i ∈ [r], we compute

Zi = Ext4(Y,Wi),

Ti = Ext5(Xi, Zi).

The output of Merg(X, Y) is then defined to be

Merg(X, Y) =
r⊕
i=1

Ti .

We now turn to the analysis. Let g ∈ [r] be such that Xg is uniformly distributed. By
Theorem 4.7, applied with I = [r] \ {g}, there exists an (X, Y)-history H that contains
{Wi | i ∈ [r] \ {g}}, such that the following holds:

82

4.8 Mergers with Weak-Seeds

• (Wg,H) ≈ε (Uh,H).

• H̃∞(Xg | H) ≥ 0.9 · `.

• H̃∞(Y | H) ≥ 0.9 · k.

• Wg is a deterministic function of X and H.

We apply Lemma 4.7 to the (X, Y)-historyH with P = Wg and J = {Zi | i ∈ [r] \ {g}}.
Lemma 4.7 is applicable since Wg is a deterministic function of X and H. Moreover, since
Zi = Ext4 (Y,Wi) and since {Wi | i ∈ [r] \ {g}} are all contained in H, the random vari-
ables {Zi | i ∈ [r] \ {g}} are deterministic functions of Y and H. Therefore, Lemma 4.7
implies that (

Wg, {Zi}i∈[r]\{g} ,H
)
≈ε (Uh, ·) .

In terms of entropy, by Lemma 2.3, we have that

H̃∞

(
Y | {Zi}i∈[r]\{g} ,H

)
≥ 0.9k − (r − 1)s ≥ 2s+ log(1/ε). (4.48)

We apply Lemma 4.6 to the (X, Y)-history {Zi | i ∈ [r] \ {g}}, H with P = Wg, M =
Y and the extractor Ext4. Lemma 4.6 is applicable since Wg is a deterministic function of
X and H. Furthermore, Equation (4.2) of Lemma 4.6 follows by Equation (4.48). Since
Zg = Ext4(Y,Wg), we have that(

Zg,Wg, {Zi}i∈[r]\{g} ,H
)
≈3ε (Us, ·) .

In terms of entropy,

H̃∞

(
Xg | Wg, {Zi}i∈[r]\{g} ,H

)
≥ H̃∞

(
Xg | {Zi}i∈[r]\{g} ,H

)
− h

= H̃∞ (Xg | H)− h
≥ 0.9`− h, (4.49)

where the first inequality follows by Lemma 2.3 and the fact that |Wg| = h. The second
equality follows by Lemma 2.6 and since conditioned on the fixing of H, the random
variables {Zi | i ∈ [r] \ {g}} are all deterministic functions of Y .

Next we apply Lemma 4.7 to the (X, Y)-history Wg, {Zi | i ∈ [r] \ {g}}, H, with
P = Zg and J = {Ti | i ∈ [r] \ {g}}. Lemma 4.7 is applicable since Zg is a deterministic
function of Y and Wg, and the latter is contained in the history to which we apply the
lemma. On the other hand, {Ti | i ∈ [r] \ {g}} are all deterministic functions of X and
{Zi | i ∈ [r] \ {g}}, all of which are contained in the history to which we apply the lemma.
Lemma 4.7 implies that(

Zg, {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H
)
≈3ε (Us, ·) .

83

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

Equation (4.49) together with Lemma 2.3 imply that

H̃∞

(
Xg | {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H

)
≥ 0.9`−h−(r−1)m ≥ 2m+log(1/ε). (4.50)

Recall that Tg = Ext5(Xg, Zg). We apply Lemma 4.6 to the (X, Y)-history {Ti | i ∈ [r] \ {g}},
Wg, {Zi | i ∈ [r] \ {g}}, H, with P = Zg and M = Xg. The application of Lemma 4.6 is
valid since Zg is a deterministic function of Y and Wg, and the latter is contained in the
history to which we apply the lemma. Furthermore, Equation (4.2) of Lemma 4.6 holds
by Equation (4.50). Hence, Lemma 4.6 implies that(

Tg, Zg, {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H
)
≈5ε (Um, ·) .

We apply Lemma 4.7 to the (X, Y)-history Zg, {Ti | i ∈ [r] \ {g}}, Wg, {Zi | i ∈ [r] \ {g}},
H with P = Tg and J = Y . This application of Lemma 4.7 is valid since Tg is a de-
terministic function of X and Zg, and the latter is contained in the history to which we
apply the lemma. Thus,(

Tg, Y, Zg, {Ti}i∈[r]\{g} ,Wg, {Zi}i∈[r]\{g} ,H
)
≈5ε (Um, ·) .

Lemma 2.12 then implies that(
Tg, {Ti}i∈[r]\{g} , Y

)
≈5ε (Um, ·) .

Since Merg(X, Y) = ⊕ri=1Ti, it holds that(
Merg (X, Y) , {Ti}i∈[r]\{g} , Y

)
≈5ε (Um, ·) .

By applying Lemma 2.12 again, one get that

(Merg (X, Y) , Y) ≈5ε (Um, ·) .

Note further that the error can be reduced from 5ε to ε without affecting the theorem’s
hypothesis. This concludes the proof of the theorem.

4.9 Three-Source Extractors with a Double-Logarithmic

Entropy Source

In this section we prove Theorem 4.2. We give a formal restatement of the theorem here
that accounts for the dependence in the error ε, as well as the strongness properties of
the extractor.

84

4.9 Three-Source Extractors with a Double-Logarithmic Entropy Source

Theorem 4.9. There exist universal constants 0 < α < 1 < c such that the follow-
ing holds. For any integer n, ε > 0 and for any δ > Ω((log(n/ε)/n)α), there exists a
poly(n, log(1/ε))-time computable three-source extractor 3Ext : ({0, 1}n)3 → {0, 1}m, with
error ε, that is strong in {1, 3} and in {2, 3}, for entropies

k1 = δn,

k2 = Ω
(
(1/δ)3c · log (n/ε)

)
,

k3 = Ω

(
(1/δ)2c · log

(
log n

ε

))
.

The number of output bits is m = Ω ((1/δ)c · log(n/ε)).

For the proof of Theorem 4.9, we make use of the following two-source extractor of
Raz [Raz05].

Theorem 4.10 ([Raz05]). For all integers n1, n2, b1, b2, such that

n1 ≥ 6 log n1 + 2 log n2,

b1 ≥ 0.6n1 + 3 log n1 + log n2,

b2 ≥ 5 log n1,

m ≤ min (n1/80, b2/400)− 1,

there exists an efficiently-computable function Raz : {0, 1}n1×{0, 1}n2 → {0, 1}m with the
following property. For any (n1, b1)-weak-source X, and an independent (n2, b2)-weak-
source Y ,

(Raz(X, Y), X) ≈ε (Um, X) ,

(Raz(X, Y), Y) ≈ε (Um, Y) ,

where ε = 2−1.5m.

We also make use of the following construction of a somewhere-condenser.

Theorem 4.11 ([Raz05, BKS+05, Zuc07]). There exist universal constants c1, c2 > 0
such that the following holds. For every δ > 0, there exists an efficiently-computable
function Cond : {0, 1}n → ({0, 1}`)r, where the output is interpreted as an r × ` matrix,
with r = Θ((1/δ)c1) rows and ` = Θ(n · δc2) columns. If X is an (n, δn)-weak-source,
then Cond(X) is 2−Ω(δ2n)-close to a convex combination of distributions, each of which
has some row with min-entropy rate 0.9.

Proof of Theorem 4.9. We start by describing the construction of 3Ext, and then turn to
the analysis. For the construction of 3Ext we need the following building blocks:

• Let Cond : {0, 1}n →
(
{0, 1}`

)r
be the somewhere-condenser from Theorem 4.11.

By Theorem 4.11, r = Θ((1/δ)c1) and ` = Θ(n · δc2), where c1, c2 > 1 are the
universal constants from Theorem 4.11. We set c = c1.

85

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

• Let Raz : {0, 1}` × {0, 1}n → {0, 1}t be the extractor from Theorem 4.10, set to
extract t = Θ(r2 · log(r) · log(nr/ε)) bits.

• Let Merg : ({0, 1}t)r → {0, 1}m be the merger with weak-seeds from Theorem 4.8,
set with error ε and output length m = t/(2r) = Θ(r · log(r) · log(nr/ε)).

Given these building blocks, the construction of 3Ext is as follows. Let X1, X2, X3 be
n-bit sources with entropies k1, k2, k3, respectively. We first compute Cond(X1), which is
an r × ` matrix R. Secondly, for each i ∈ [r], we compute Si = Raz(Ri, X2). We stack
S1, . . . , Sr in an r × t matrix S. The output is then 3Ext(X1, X2, X3) = Merg(S,X3).

We now turn to the analysis. We prove that the extractor is strong in {2, 3}. Since
Raz is strong in both of its sources, a similar argument can be used to show that the
extractor is also strong in {1, 3}. By Theorem 4.11, since X1 is an (n, δn)-weak-source,
the matrix R is 2−Ω(δ2n)-close to a convex combination of distributions, each of which has
some row with min-entropy rate 0.9. Therefore, we may assume that R is 2−Ω(δ2n)-close
to a random variable R′, such that there exists g ∈ [r] where R′g has min-entropy rate
0.9. Note that by taking the universal constant α to be smaller than 1/2, we get that
2−Ω(δ2n) ≤ ε.

One can easily verify that the hypothesis of Theorem 4.10 is met assuming

δ ≥ Ω

((
log(n/ε)

n

)1/(3c1+c2)
)
,

which holds by taking the universal constant α = 1/(3c1 + c2) (note that α ≤ 1/2). By
Theorem 4.10, and since 2−1.5t ≤ ε,(

Raz(R′g, X2), X2

)
≈ε (Ut, X2).

Since (Rg, R
′
g) and X2 are independent and since SD(R,R′) ≤ ε, Lemma 2.8 (applied to

the random function f(Z) = (Raz(Zg, X2), X2), where X2 is the internal randomness of
f) implies that

(Sg, X2) = (Raz(Rg, X2), X2) ≈2ε (Ut, X2).

Thus, by Markov’s inequality, with probability at least 1 −
√
ε over the fixing X2 = x2,

it holds that (Sg | X2 = x2) is 2
√
ε-close to uniform. We condition on the event X2 = x2

for such x2. Lemma 2.15 then implies that S ≈2
√
ε S
′, where S ′ is a somewhere-random

source.
We apply the merger from Theorem 4.8 to S ′ and the weak-source X3. By the choice

of t, and since k3 ≥ Ω(r · log(r) · log(r log(n)/ε)), the hypothesis of Theorem 4.8 is met,
and so Theorem 4.8 implies that

(Merg(S ′, X3), X3) ≈ε (Um, X3) . (4.51)

Since S ≈2
√
ε S
′, and since (S, S ′) and X3 are independent, Lemma 2.8 (applied to the

random function f(Z) = (Merg(Z,X3), X3), where X3 is the internal randomness of f),
implies that

(Merg(S,X3), X3) ≈2
√
ε (Merg(S ′, X3), X3) , (4.52)

86

4.10 Two-Source Non-Malleable Extractors

and so by Equation (4.51) and Equation (4.52) we have that

(Merg(S,X3), X3) ≈3
√
ε (Um, X3) .

By Markov’s inequality, with probability at least 1−ε1/4 over the further fixing ofX3 = x3,
it holds that Merg(S, x3) is 3ε1/4-close to uniform. Thus, we have that

(3Ext(X1, X2, X3), X2, X3) = (Merg(S,X3), X2, X3) ≈O(ε1/4) (Um, X2, X3) .

Note that the error can be reduced from O(ε1/4) to ε without affecting the theorem
statement. This concludes the proof of the theorem.

4.10 Two-Source Non-Malleable Extractors

In this section we construct a two-source t-non-malleable extractor using our LCBs from
Theorem 4.7. We start by giving a formal definition of two-source t-non-malleable ex-
tractors and a formal restatement of Theorem 4.4.

Definition 4.12 (Two-source t-non-malleable extractors). A function f : ({0, 1}n)2 ×
{0, 1}d → {0, 1}m is called a two-source t-non-malleable extractor for entropies k1, k2,
with error ε, if for any (n, k1)-weak-source X and an independent (n, k2)-weak-source Y ,
the following holds. For any t functions A1, . . . , At : {0, 1}d → {0, 1}d, where each Ai has
no fixed points (that is, for all i ∈ [t] and s ∈ {0, 1}d, Ai(s) 6= s), it holds that(

f(X, Y, S), S, {f(X, Y,Ai(S))}ti=1

)
≈ε (Um, ·) .

We say that f is strong in the first-source if(
f(X, Y, S), X, S, {f(X, Y,Ai(S))}ti=1

)
≈ε (Um, ·) .

Similarly, we say that f is strong in the second source if(
f(X, Y, S), Y, S, {f(X, Y,Ai(S))}ti=1

)
≈ε (Um, ·) .

Theorem 4.12. For all integers n, t and for any ε > 0, there exists a poly(n, t, log(1/ε))-
time computable two-source t-non-malleable extractor

2NMExt : ({0, 1}n)2 × {0, 1}d → {0, 1}h,

with h = Θ(t · log(n/ε)) output bits and error ε, for entropies

k1 = Ω
(
t2 · log2 (n/ε)

)
,

k2 = Ω
(
t · log2 (n/ε)

)
,

with seed length d = O(log(n/ε)). Moreover, 2NMExt is strong in the second source.

87

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

For the proof of Theorem 4.12 we introduce and make use of the following type of
random sources.

Definition 4.13 (α-where random sources). Let α ∈ [0, 1]. A random variable X in the
form of an r × ` matrix is called an α-where random source, if α-fraction of the rows of
X are good. That is, if there exists S ⊆ [r] with |S| ≥ αr, such that for every i ∈ S it
holds that Xi is uniformly distributed.

For the proof of Theorem 4.12 we make use of the following result due to Zucker-
man [Zuc97].

Lemma 4.14. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for entropy k
with error ε. Let B ⊆ {0, 1}m be a set with size |B| = β · 2m. Define

OverHitExt(B) =
{
x ∈ {0, 1}n

∣∣∣ Pr[Ext(x, Ud) ∈ B] > β + ε
}
.

Then, |OverHitExt(B)| ≤ 2k.

We now turn to prove Theorem 4.12.

Proof of Theorem 4.12. We first describe the construction of 2NMExt and then turn to
the analysis. For the construction we make use of the following building blocks.

• Let Ext1 : {0, 1}n × {0, 1}d → {0, 1}D be the strong seeded extractor from Theo-
rem 2.2 set with error ε. By Theorem 2.2, Ext1 is an extractor for entropy 2D with
d = O(log(n/ε)). We denote r = 2d = poly(n/ε) and identify [r] with {0, 1}d. In
particular, we think of elements of [r] as seeds for Ext1.

• Set ε′ = ε2/r and ` = O(t2·log(nr/ε)·log r) = O(t2·log2(n/ε)) and let Ext2 : {0, 1}n×
{0, 1}D → {0, 1}` be the strong seeded extractor from Theorem 2.2 set with error
ε′. By Theorem 2.2, Ext2 is an extractor for entropy 2` with D = O(log(n/ε′)) =
O(log(n/ε)).

• Let LCB : ({0, 1}`)r × {0, 1}n → ({0, 1}m)r be the (t + 1)-LCB from Theorem 4.7
set with error ε. By Theorem 4.7, m = O(t · log(n/ε)).

We now describe the construction of 2NMExt. First, we define the r × D matrix Ȳ
as follows. For s ∈ {0, 1}d, row s of Ȳ is defined by Ext1(Y, s). Next, we define the r × `
matrix X̄ as follows. For s ∈ {0, 1}d, row s of X̄ is defined by X̄s = Ext2(X, Ȳs). We
define the r×m matrix Z by Z = LCB(X̄, Y). Finally, we define 2NMExt(X, Y, S) = ZS.

We turn to the analysis, starting with the running-time. We note that given S,
one can compute row S of Ȳ , X̄ and Z without resorting to computing other rows of
these matrices, and do so in time poly(n, log(1/ε)) (even though the number of rows is
polynomial in 1/ε). Thus, the running-time for computing 2NMExt on inputs (X, Y, S)
is poly(n, log(1/ε)).

Now, let

B =
{
y ∈ {0, 1}n

∣∣∣ (X̄ | Y = y) is not ε-close to a (1− 2ε)-where random source
}
.

88

4.10 Two-Source Non-Malleable Extractors

Claim 4.14.1. |B| ≤ 22D.

Proof of Claim 4.14.1. Since Ext2 is a strong seeded extractor for entropy 2` with error
ε′, and since H∞(X) ≥ 2`, it holds that

(Ext2(X,S), S) ≈ε′ (U`, S) ,

where S is uniformly distributed over {0, 1}D and is independent of X. Thus, by Markov’s
inequality, with probability at least ε over s ∼ UD, it holds that Ext2(X, s) is (ε′/ε)-close
to uniform. We define

BadSeeds(X) =
{
s ∈ {0, 1}D | SD(Ext2(X, s), Um) > ε′/ε

}
.

By the above we have that |BadSeeds(X)| ≤ ε · 2D. Let

B′ =
{
y ∈ {0, 1}n

∣∣∣ Pr [Ext1(y, Ud) ∈ BadSeeds(X)] ≥ 2ε
}
.

The proof of the claim will follow by showing that B ⊆ B′ and that |B′| ≤ 22D. Since
Ext1 is an extractor with error ε and since |BadSeeds(X)| ≤ ε · 2D, the second assertion,
namely |B′| ≤ 22D, follows by Lemma 4.14. As for the first assertion, we will show that
y 6∈ B′ =⇒ y 6∈ B. If y 6∈ B′ then conditioned on Y = y, at least 1− 2ε fraction of the
rows of Ȳ are not contained in BadSeeds(X). Thus, conditioned on Y = y, at least 1−2ε
fraction of X̄’s rows are ε′/ε-close to uniform. Thus, by Lemma 2.15 applied (1 − 2ε)r
times, X̄ is r · ε′/ε-close to a (1 − 2ε)-where random source. Thus, y 6∈ B. The second
assertion and the claim then follows by our choice of ε′.

By Claim 4.14.1 and since H∞(Y) ≥ 2D + log(1/ε) it follows that

Pr[Y ∈ B] =
∑
y∈B

Pr[Y = b] ≤ 22D · 2−H∞(Y) ≤ ε.

Therefore, there exists a random variable Y ′ such that Pr[Y ′ ∈ B] = 0 and Y ≈ε Y ′.
Moreover, H∞(Y ′) ≥ H∞(Y) − 1. We continue with the analysis as if we were given a
sample from Y ′ rather than from Y , and then aggregate the ε statistical distance between
Y and Y ′ to the total error. For the sake of readability we abuse notation and denote Y ′

by Y . We continue by proving the following claim.

Claim 4.14.2. For any δ > 0 and J ⊆ [r], |J | ≤ t+ 1, it holds that

Pr
v

[
H∞(Y | ȲJ = v) < H∞(Y)− (t+ 1)D − log(1/δ)

]
≤ δ.

Proof. As each row of Ȳ consists of D bits, Lemma 2.3 implies that H̃∞(Y | ȲJ) ≥
H∞(Y)− (t+1)D. Thus, by Lemma 2.4, except with probability δ over the fixing ȲJ = v
it holds that H∞(Y | ȲJ = v) ≥ H∞(Y)− (t+ 1)D − log(1/δ).

89

4. LOCAL CORRELATION BREAKERS AND APPLICATIONS TO
MULTI-SOURCE EXTRACTORS AND MERGERS

For g ∈ {0, 1}d, let Ig = {A1(g), . . . , At(g)}. Since the Ai’s have no fixed points, we
have that g 6∈ Ig. Let Jg = Ig ∪ {g}. By the above, conditioned on any fixing Y = y, X̄
is ε-close to a (1 − 2ε)-where random source which we denote by X̄y. Thus, for 1 − 2ε
fraction of g ∈ {0, 1}d it holds that X̄y

g is uniform. Moreover, by Claim 4.14.2 we have
that with probability at least 1− δ over the fixing of ȲJg , the min-entropy of Y is at least
H∞(Y)− (t+ 1)D − log(1/δ).

We would like to apply Theorem 4.7 to X̄ and Y with rows g, Ig. However, the theorem
is not directly applicable since X̄ and Y are not necessarily independent. Nevertheless,
we make the observation that for the proof of Theorem 4.7 to go through, it is enough
that the relevant rows of X̄ (which in our case are Jg = Ig ∪{g}) and Y are independent.
This indeed holds when conditioned on the fixing of ȲJg .

By the above, we have that with probability 1−2ε over g ∼ {0, 1}d it holds that X̄y
g is

uniform and that for any g, even conditioned on the fixing of ȲJg , Y still has min-entropy
H∞(Y)− (t + 1)D − log(1/δ) except with probability δ. By setting δ = ε/r and by our
choice of parameters, we have that with probability 1−O(ε) over the fixing of Y , it holds
that with probability 1−2ε over g ∼ {0, 1}d, Zg is O(ε)-close to uniform even conditioned
on {Zi | i ∈ Ig}. This concludes the proof of the theorem.

90

Chapter 5

Zero-Fixing Extractors for
Sub-Logarithmic Entropy

5.1 Bit-Fixing Sources

In Chapter 2 we introduced the notion of an (n, k)-weak-source of randomness. One
important and well-studied subclass of weak-sources are bit-fixing sources.

Definition 5.1 (Bit-fixing sources). Let n, k be integers such that n ≥ k. A random
variable X on n bits is called an (n, k)-bit-fixing source, if there exists S ⊆ [n] with size
|S| = k, such that X|S is uniformly distributed, and each Xi with i 6∈ S is fixed.

The problem of extracting randomness from bit-fixing sources was initiated in the
works of [Vaz85, BBR85, CGH+85], motivated by applications to fault-tolerance, cryp-
tography and communication complexity. More recently, bit-fixing extractors have found
applications to formulae lower bounds [KRT13], and for compression algorithms for “easy”
Boolean functions [CKK+13].

The early works on bit-fixing extractors were concentrated on positive and negative
results for extracting a truly uniform string. In [CGH+85], it was observed that one can
efficiently extract a uniform bit even from (n, 1)-bit-fixing sources, simply by XOR-ing
all the input bits. In a sharp contrast, it was shown that extracting two jointly uniform
bits cannot be done even from (n, n/3− 1)-bit-fixing sources. Given this state of affairs,
early works dealt with what we call “the high-entropy regime”. Using a relation to
error correcting codes, Chor et al. [CGH+85] showed how to efficiently extract roughly
n − t · log2(n/t) truly uniform output bits from (n, n − t)-bit-fixing sources, with t =
o(n). The authors complemented this result by an almost matching upper bound of
n − (t/2) · log2(n/t) on the number of truly uniform output bits one can extract. In
the same paper, some results were obtained also for (n, k)-bit-fixing sources, where k is
slightly below n/2. Further lower bounds for this regime of parameters were obtained by
Friedman [Fri92].

These negative results naturally led to study the relaxation, where the output of

91

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

the extractor is only required to be close to uniform, in statistical distance.1 A simple
probabilistic argument can be used to show that, computational aspects aside, one can
extract m = k − 2 log(1/ε) − O(1) bits that are ε-close to uniform, from any (n, k)-bit-
fixing source, as long as k ≥ log(n) + 2 log(1/ε) + O(1). For simplicity, in this chapter
that covers the paper [CS15], we think of ε as a small constant. Thus, in particular, by
allowing for some small constant error ε > 0, one can extract almost all the entropy k
from any (n, k)-bit-fixing source, even for k as low as log(n) + O(1). We call the range
log n ≤ k ≤ o(n), “the low-entropy regime”.

The probabilistic argument mentioned above only yields an existential proof, whereas
efficiently computable extractors are far more desired. Kamp and Zuckerman [KZ06] gave
the first explicit construction of an (n, k)-bit-fixing extractor, with k = o(n). More pre-
cisely, for any constant γ > 0, an explicit (n, n1/2 +γ)-bit-fixing extractor was given, with
Ω(n2γ) output bits. In a subsequent work, Gabizon, Raz and Shaltiel [GRS06] obtained
an explicit (n, logc n)-bit-fixing extractor, where c > 1 is some universal constant. More-
over, the latter extractor outputs (1−o(1))-fraction of the entropy, thus getting very close
to the parameters of the non-explicit construction obtained by the probabilistic method.
Using different techniques, Rao [Rao09b] obtained a bit-fixing extractor with improved
dependence on the error ε.

For a vast majority of randomness extraction problems, such as the problem of con-
structing two-source extractors and affine extractors, a näıve probabilistic argument yields
(non-explicit) extractors with essentially optimal parameters. Interestingly, this is not
the case for bit-fixing extractors. The first evidence for that comes from the observation
mentioned above. Namely, the XOR function is an extractor for (n, 1)-bit-fixing sources.
A result of Kamp and Zuckerman [KZ06] shows that this is not an isolated incident,
and in fact, for any k ≥ 1 there is an (explicit and simple) extractor for (n, k)-bit-fixing
sources, that outputs 0.5 · log2(k) − O(log log k) random bits that are close to uniform.
This result was later improved and simplified by Reshef and Vadhan [RV13], who showed
how to output 0.5 · (log k − log log(1/ε)) bits. On the other hand, one can show that,
with high probability, a random function with a single output bit is constant on some
bit-fixing source with entropy, say, log(n)/10. Thus, in this setting, structured functions
outperform random functions, in the sense that the former can extract a logarithmic
amount of the entropy from bit-fixing sources with arbitrarily low entropy, whereas the
latter are constant, with high probability, on some (n, log(n)/10)-bit-fixing source.

Reshef and Vadhan [RV13] considered k that is sub-logarithmic in n – a regime we
call the “very low entropy regime”. In [RV13] it is shown that any extractor that is
computable by a space-bounded streaming algorithm can output only O(log k) bits in
this regime.

1Friedman [Fri92] studied other notions of closeness. Although different measures are of interest,
when analyzing extractors, the gold standard measure of closeness between distributions is statistical
distance. In this paper we follow the convention, and measure the error of an extractor by the statistical
distance of its output to the uniform distribution.

92

5.2 Our Contribution

5.2 Our Contribution

Our first result states that when the entropy k is small enough compared to n, one cannot
extract more than 0.5 · log2(k) + O(1) bits from an (n, k)-bit-fixing source, information
theoretically. That is, for small enough k, the computational assumption on the extractor
imposed in [RV13] can be removed. Note that this negative result is tight as implied by
the constructions of [KZ06, RV13].

In fact, the following impossibility result holds also for what we call zero-fixing sources.
A random variableX is an (n, k)-zero-fixing source if it is an (n, k)-bit-fixing source, where
all the fixed bits are set to zero. More formally,

Definition 5.2 (Zero-fixing sources). Let n, k be integers such that n ≥ k. A random
variable X on n bits is called an (n, k)-zero-fixing source, if there exists S ⊆ [n] with size
|S| = k, such that X|S is uniformly distributed, and each Xi with i 6∈ S is fixed to zero.

Zero-fixing sources are natural as they model bit-fixing sources in which the fixed
bits are set to some default value rather than to an arbitrary value. To state the result,
we introduce the following notation. The function Tower : N → N is defined as follows:
Tower(0) = 1, and for an integer n ≥ 1, Tower(n) = 2Tower(n−1).

Theorem 5.1. For any integers n, k such that Tower(k3/2) < n, the following holds.
Let Ext : {0, 1}n → {0, 1}m be an (n, k)-zero-fixing extractor with error ε. If m > 0.5 ·
log2(k) +O(1), then ε ≥ 0.99.

Since the impossibility result stated in Theorem 5.1 holds for zero-fixing sources, it
is natural to try and complement it with feasibility results. Using a näıve probabilistic
argument, one can prove the existence of an (n, k)-zero-fixing extractor, for any k ≥
log log n+ log log log n+O(1), with m = k−O(1) output bits, where we treat the error ε
as constant, for simplicity. Our second result is an almost matching explicit construction.

Theorem 5.2. For any constant µ > 0, and n, k ∈ N, such that k ≥ (log log n)2+µ, there
exists an efficiently computable function

ZeroBFExt : {0, 1}n → {0, 1}m,

where m = Ω(k), with the following property. For any (n, k)-zero-fixing source X, it holds

that ZeroBFExt(X) is (2−k
Ω(1)

+ (k log n)−Ω(1))-close to uniform.

We remark that the techniques used in [GRS06, Rao09b] for the constructions of bit-
fixing extractors seem to work only for k ≥ poly log n, even for zero-fixing sources, and
new ideas are required so to exploit the extra structure of zero-fixing sources in order to
extract Ω(k) bits from such sources with sub-logarithmic entropy.

As mentioned, Reshef and Vadhan [RV13] proved that for k = o(log n), any space-
bounded streaming algorithm can extract at most O(log k) bits. The authors left open
the problem of whether or not one can extract Ω(k) bits for k = o(log n). Theorem 5.1
shows that this is impossible for k which is very small compared to n. Nevertheless, in

93

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

the following theorem we answer the open problem of [RV13] positively and show that
one can extract k − O(1) bits even when k = O(log log n). For simplicity, we state here
the theorem for a constant error ε.

Theorem 5.3. For any integers n, k, and constant ε > 0, such that k > log log n +
2 log log log n+Oε(1), there exists a function

QuasiBFExt : {0, 1}n → {0, 1}m,

where m = k − Oε(1), with the following property. Let X be an (n, k)-bit-fixing source.
Then, QuasiBFExt(X) is ε-close to uniform. The running-time of evaluating QuasiBFExt
is nOε((log logn)2).

On top of the semi-explicit construction in Theorem 5.3, in [CS15] we give a simpler
existential proof for an extractor QuasiBFExt, with parameters as in Theorem 5.3, based
on the Lóvasz Local Lemma.

5.3 Proofs Overview

In this section we give an overview for the proofs of Theorem 5.1 and Theorem 5.2. The
full proofs of these theorems and of Theorem 5.3 can be found in [CS15]. For the sake of
clarity, in this section we allow ourselves to be informal and somewhat imprecise.

5.3.1 Proof overview for Theorem 5.1

To give an overview for the proof of Theorem 5.1, we start by considering a related prob-
lem. Instead of proving an upper bound on the number of output bits of an (n, k)-zero-
fixing extractor, we prove an upper bound for zero-error dispersers. Generally speaking, a
zero-error disperser for a class of sources is a function that obtains all outputs, even when
restricted to any source in the class. More concretely, an (n, k)-zero-fixing zero-error dis-
perser is a function ZeroErrDisp : {0, 1}n → {0, 1}m, such that for any (n, k)-zero-fixing
source X, it holds that supp(ZeroErrDisp(X)) = {0, 1}m. We show that for any such zero-
error disperser, if k is small enough compared to n, thenm ≤ log2(k+1). More specifically,
we prove that for any integers n, k such that Tower(k2) < n and m = blog2(k + 1)c+1, for
any function f : {0, 1}n → {0, 1}m, there exists an (n, k)-zero-fixing source, restricted to
which f is a symmetric function, i.e., f depends only on the input’s weight. In particular,
f does not obtain all possible outputs.2 This implies that if f : {0, 1}n → {0, 1}m is a
(n, k)-zero-fixing zero-error dispersers and Tower(k2) < n, then m ≤ log2(k + 1).

Given f : {0, 1}n → {0, 1}m, we construct the required source X in a level-by-level
fashion, as follows. Trivially, f is symmetric on any (n, 1)-zero-fixing source, regardless
of the value of m. Next, we find an (n, 2)-zero-fixing source on which f is symmetric.

2 If m > blog2(k + 1)c+ 1, then the same result can be obtained by restricting the output to the first
blog2(k + 1)c+ 1 output bits.

94

5.3 Proofs Overview

By the pigeonhole principle, there exists a set of indices I1 ⊆ [n], with size |I1| ≥ n/2m,
such that f(ei) = f(ej) for all i, j ∈ I1. Here, for an index i ∈ [n], we denote by ei the
unit vector with 1 at the i’th coordinate. If n > 2m, then |I1| ≥ 2, and so there exist two
distinct i, j ∈ I1. Thus, f restricted to the (n, 2)-zero-fixing source {0, ei, ej, ei + ej} is
symmetric.

We take a further step, and find an (n, 3)-zero-fixing source on which f is symmetric.
We restrict ourselves to the index set I1 above, and consider the complete graph with
vertex set I1, where for every two distinct vertices i, j ∈ I1, the edge connecting them is
colored by the color f(ei + ej), where we think of {0, 1}m as representing 2m colors. By
the multi-color variant of Ramsey theorem, there exists a set I2 ⊆ I1, of size

|I2| ≥ log(|I1|)/poly(2m),

such that the complete graph induced by I2 is monochromatic. Therefore, if n > 22O(m)
=

2poly(k), then |I2| ≥ 3, and so there exist distinct i1, i2, i3 ∈ I2 such that

f(ei1) = f(ei2) = f(ei3),

f(ei1+ei2) = f(ei1 + ei3) = f(ei2 + ei3).

Thus, f is symmetric on the (n, 3)-zero-fixing source spanned by {ei1 , ei2 , ei3}.
To construct an (n, 4)-zero-fixing source on which f is symmetric, we consider the com-

plete 3-uniform hypergraph on vertex set I2 as above, where an edge {i1, i2, i3} is colored
by f(ei1 + ei2 + ei3). Applying the multi-color Ramsey theorem for hypergraphs [ER52],
we obtain a subset of the vertices I3 ⊆ I2, with size

|I3| ≥ log log(|I2|)/poly(2m),

such that the induced complete hypergraph by the vertex set I3 is monochromatic. There-
fore, if log log log n ≥ poly(k), then |I3| ≥ 4, and thus there are distinct coordinates
i1, i2, i3, i4 ∈ I3 such that f is symmetric on the (n, 4)-zero-fixing source spanned by
{ei1 , ei2 , ei3 , ei4}.

We continue this way, and find an (n, k)-zero-fixing source on which f is symmetric,
by applying similar Ramsey-type arguments on r-uniform complete hypergraphs, with
2m colors, for r = 4, 5, . . . , k−1. A calculation shows that as long as Tower(k2) < n, such
a source can be found.

To obtain the negative result for (n, k)-bit-fixing extractors, we follow a similar ar-
gument. The only difference is that in this case, it is enough to find an (n, k)-bit-fixing
source X, such that f is symmetric restricted only to the O(

√
k) middle levels of X.

Since most of the weight of X sits in these levels, an (n, k)-bit-fixing extractor cannot
be symmetric restricted to these middle levels, regardless of the values obtained by the
extractor in the remaining points of X.

5.3.2 Proof overview for Theorem 5.2

Informally speaking, the advantage one should exploit when given a sample from an
(n, k)-zero-fixing source X, as apposed to a sample from a more general bit-fixing source,

95

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

is that “1 hits randomness”. More formally, if Xi = 1, then we can be certain that i ∈ S,
where S ⊂ [n] is the set of indices for which X|S is uniform. How should we exploit this
advantage?

A natural attempt would be the following. Consider all (random) indices 1 ≤ i1 <
i2 < · · · < iW ≤ n, such that Xi1 = · · · = XiW = 1. Note that W , the Hamming weight of
the sample, is a random variable concentrated around k/2. Let M = iW/2 be the median
of these random indices. One can show that, with high probability with respect to the
value of M , both the prefix (X1, X2, . . . , XM) and the suffix (XM+1, XM+2, . . . , Xn) have
entropy roughly k/2. Intuitively, this is because the “hidden” random bits, namely bits in
coordinates i ∈ S such that Xi = 0, must be somewhat intertwined with the “observed”
random bits – bits in coordinates i ∈ S for which Xi = 1. In particular, except with
probability 2−Ω(k) over the value of M , both the prefix and the suffix have entropy at
least 0.49k. Thus, by appending these prefix and suffix with zeros, one can get two n bit
sources Xleft, Xright, each having entropy at least 0.49k.

We observe that conditioned on the value of the median M , the random variables
Xleft and Xright preserve the zero-fixing structure. Unfortunately, however, Xleft, Xright

are dependent. In this proof overview, we rather continue with the description of the
zero-fixing extractor as if Xleft, Xright were independent, and deal with the dependencies
later on.

After obtaining Xleft and Xright, we apply the lossless-condenser of Rao [Rao09b] on
each of these random variables. This is an efficiently computable function Cond : {0, 1}n →
{0, 1}k logn, that is one-to-one when restricted to any (n, k)-bit-fixing source. We compute
Yleft = Cond(Xleft) and Yright = Cond(Xright) to obtain two (k log n, 0.49k)-weak sources.
Note that the one-to-one guarantee implies that no entropy is lost during the condensing,
and so the entropy of Yleft, Yright equals the entropy of Xleft, Xright, respectively.

At this point, for simplicity, assume we have an explicit optimal two-source extractor

TwoSourceExt : {0, 1}k logn × {0, 1}k logn → {0, 1}m

to our disposal. The output of our zero-fixing extractor is then TwoSourceExt(Yleft, Yright).
Working out the parameters, one can see that an optimal two-source extractor would
yield an (n, k)-zero-fixing extractor for k > log log n + O(log log log n), error 2−Ω(k) and
output length, say, 0.9k.

Constructing two-source extractors for even sub-linear entropy, let alone for logarith-
mic entropy, as used in the last step, is a major open problem in pseudorandomness. Even
for our short input length k log n = Õ(log n), no poly(n)-time construction is known. In
this proof overview however, we choose to rely on such an assumption for the sake of clar-
ity. In the real construction, we apply the split-in-the-median process above, recursively,
to obtain c weak-sources, for any desired constant c. In a recent breakthrough, Li [Li13]
gave an explicit construction of a multi-source extractor, that extracts a constant fraction
of the entropy, from a constant number of weak-sources with poly-logarithmic entropy.
In the actual construction, instead of using a two-source extractor, we use the extractor
of Li with the appropriate constant c.

96

5.3 Proofs Overview

Working around the dependencies. So far we ignored the dependencies between
Xleft and Xright, even though their condensed images are given as inputs to a two-source
extractor, and the latter expects its inputs to be independent. As we now explain, the
dependencies between Xleft and Xright can be worked around.

The crucial observation is the following: conditioned on the fixing of the Hamming
weight W of the sample X, and conditioned on any fixing of the median M , the random
variables Xleft, Xright are independent! To see this, fix W = w. Then, conditioned on
the event M = m, the value of the prefix X1, . . . , Xm gives no information whatsoever
about the suffix. More precisely, conditioned on any fixing of the prefix X1, . . . , Xm, the
suffix is distributed uniformly at random over all n − m bit strings, with zeros outside
S ∩ {m+ 1, . . . , n}, and exactly w/2 ones in S ∩ {m+ 1, . . . , n}.

This observation motivates the following definition. We say that a random variable
X is an (n, k, w)-fixed-weight source, if there exists S ⊆ [n], with size |S| = k, such
that a sample x ∼ X is obtained as follows. First, one samples a string x′ ∈ {0, 1}k of
weight w, uniformly at random from all

(
k
w

)
such strings, and then sets X|S = x′, and

Xi = 0 for all i 6∈ S. It is easy to see that any (n, k)-zero-fixing source is 2−Ω(k)-close to
a convex combination of (n, k, w)-fixed-weight sources, with w ranges over k/3, . . . , 2k/3.
Therefore, any extractor for (n, k, w)-fixed-weight sources, for such values of w, is also an
extractor for (n, k)-zero-fixing sources.

We now reanalyze the algorithm described above. Since an (n, k)-zero-fixing source
is 2−Ω(k)-close to a convex combination of (n, k, w)-fixed-weight sources, with k/3 ≤ w ≤
2k/3, we may assume, for the analysis sake, that the input is sampled from an (n, k, w)-
fixed-weight source for some fixed k/3 ≤ w ≤ 2k/3. Fix also the median M to some
value m ∈ [n]. Note that Xleft is an (n, kleft(m), w/2)-fixed-weight source3, and Xright is
an (n, kright(m), w/2)-fixed-weight source, with kleft(m) and kright(m) being deterministic
functions of m, satisfying kleft(m) + kright(m) = k. Moreover, by the discussion above, we
have that conditioned on the fixing M = m, the two random variables Xleft, Xright are
independent.

To summarize, conditioned on any fixing M = m, the two random variables Xleft, Xright

are independent and preserve their fixed-weight structure. We further note that, with
probability 1− 2−Ω(k) over the value of M , it holds that kleft, kright ≥ 0.49k.

Recall that at this point we apply Rao’s lossless-condenser on both Xleft and Xright, to
obtain shorter random variables Yleft, Yright. Rao’s condenser is one-to-one when restricted
to bit-fixing sources. Since Xleft and Xright are fixed-weight sources, they are in particular
contained in some (n, k)-bit-fixing sources, and so the random variables Yleft, Yright have
the same entropy as Xleft, Xright, respectively.

It is worth mentioning that Rao’s condenser Cond is linear, and as a result, if Xleft

were a bit-fixing source, then the resulting Yleft = Cond(Xleft) would have been an affine
source. This property was crucial for Rao’s construction of bit-fixing extractors. Since we
wanted to maintain independence between Xleft, Xright, in our case these random variables
are no longer bit-fixing sources, but rather fixed-weight sources. Thus, the resulting Yleft,

3To be more precise, Xleft is not an (n, kleft(m), w/2)-fixed-weight source per se, as its mth bit is
constantly 1. Ignoring this bit would make Xleft a fixed-weight source.

97

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

Yright are not affine sources, but only weak sources, with min-entropy log2(
(

0.49k
w/2

)
) = Ω(k).

This is good enough for our needs, as in the next step we use a two-source extractor, and
do not rely on the affine-ness.

Lastly, we apply a two-source extractor on the condensed random variables Yleft, Yright,
which is a valid application, as these sources are independent, and with probability 1 −
2−Ω(k), both have entropy Ω(k).

5.4 An Impossibility Result

For the proof of Theorem 5.1 we use the following notation. Let n be an integer and
let I ⊆ [n]. We denote by {0, 1}I the set of binary strings of length |I| indexed by
the elements of I. Using this notation for a string x ∈ {0, 1}I , we let xI ∈ {0, 1}n be
the n bit string y such that y|I = x, and yi = 0 for all i 6∈ I, i.e., xI is the extension
of x to an n bit string with zeros outside the coordinate set I. Also, for a function
f : {0, 1}n → {0, 1}m and a subset I ⊆ [n], we define the function fI : {0, 1}I → {0, 1}m
as the restriction of f obtained by fixing the coordinates outside I to zeros. That is fI is
defined as fI(x) = f(xI)

We will need the following classical result of Erdős and Rado [ER52] on Ramsey
numbers of multicolored hypergraphs .

Theorem 5.4 ([ER52], Theorem 1). Let G be the complete r-uniform hypergraph with
vertex set [n]. Assume that each edge in G is colored by some color from [c]. Then, there
exists a subset I ⊆ [n] of size |I| ≥ c−O(1) · log(r−1)(n), such that the induced complete
hypergraph by I is monochromatic.4

The following corollary readily follows by Theorem 5.4. Indeed, the corollary is simply
a rephrasing of the theorem in a slightly different language.

Corollary 5.5. For any function f : {0, 1}n → {0, 1}m and integer r ∈ [n], there exists
a set of indices I ⊆ [n], with size |I| ≥ 2−O(m) · log(r−1)(n), such that fI is constant on
the rth level of {0, 1}I , i.e., fI(x) = fI(y) for all x, y ∈ {0, 1}I with |x| = |y| = r.

Proof. Consider the complete r-uniform hypergraph on vertex set [n], where each hyper-
edge S ⊆ [n] of size |S| = r is colored with f(1S), where 1S is the characteristic function
of the set S, i.e., (1S)i = 1 if and only if i ∈ S. By Theorem 5.4, there exists a subset
of the vertices I ⊆ [n], of size 2−O(m) · log(r−1)(n), such that the complete hypergraph
induced by the vertex set I is monochromatic. By construction, this implies that for any
x, y ∈ {0, 1}I with |x| = |y| = r, it holds that f(xI) = f(yI). Therefore, the function
fI : {0, 1}I → {0, 1}m is as desired.

4 We remark that Theorem 1 in [ER52] is stated somewhat differently. The theorem, as stated in the
original paper, asserts that any large enough complete r-uniform hypergraph, with hyperedges colored
by c colors, contains a monochromatic complete r-uniform hypergraph on N vertices. By large enough
we mean that the number of vertices is some (tower) function that depends on r, c and N . For our
purposes, however, it will be more convenient to apply the theorem as we state it.

98

5.4 An Impossibility Result

Before proving Theorem 5.1, we prove an analogous theorem for zero-error dispersers.
We do so as the proof is slightly cleaner. Moreover, we consider this to be a natural
impossibility result by itself.

Theorem 5.6. Let ZeroErrDisp : {0, 1}n → {0, 1}m be an (n, k)-zero-fixing zero-error
disperser. If n > Tower(k2), then m ≤ log(k + 1).

Proof. Clearly, it is enough to prove that if m = blog(k + 1)c + 1 then there exists
an (n, k)-zero-fixing source on which ZeroErrDisp obtains at most k + 1 distinct values,
and thus reach a contradiction. (If m is larger, then we will obtain a contradiction by
restricting the output to the first m = dlog(k + 1)e+ 1 bits.)

We define a sequence [n] = I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Ik, such that for each i = 1, . . . , k
the restricted function fIi is symmetric on the levels 0, . . . , i of the restricted hypercube
{0, 1}Ii . Then, we shall claim that if n > Tower(k2) then |Ik| ≥ k. By taking I ⊆ Ik
to be any subset of size k we obtain a zero-fixing source spanned by the coordinates of
I, such that the restriction of f to this zero-fixing source is a symmetric function, and
in particular obtains at most k + 1 values. By the argument above, this implies that
m ≤ log(k + 1).

We define the subsets Ii iteratively by applying Corollary 5.5 for each i = 1, . . . , k
with the function fi−1 : {0, 1}Ii−1 → {0, 1}m and with r = i. Letting ni−1 = |Ii−1|, by
Corollary 5.5 we obtain a subset Ii ⊆ Ii−1 of size ni = |Ii| ≥ 2−O(m) · log(i−1)(ni−1). One
can show, e.g., by induction on i = 1, . . . , k − 1, that ni ≥ 2−O(m) · log(si)(n), where

si =
∑i

j=1(j − 1) = i(i− 1)/2. In particular, this implies that nk ≥ 2−O(m) · log(k2/2)(n),

and so if n > Tower(k2) then |Ik| = nk ≥ k. This completes the proof of the theorem.

We now turn to prove Theorem 5.1.

Proof of Theorem 5.1. The proof outline is similar to the proof of Theorem 5.6, The
only difference, when considering extractors rather than zero-error dispersers, is that
it is enough to find an (n, k)-zero-fixing source such that f restricted to this source is
symmetric only in the middle O(

√
k) levels, and not on all points of X. More precisely,

let bottom = k/2 − c ·
√
k · log(1/δ) and top = k/2 + c ·

√
k · log(1/δ), where c is a

universal constant such that

top∑
i=bottom

(
k

i

)
≥
(

1− δ

2

)
· 2k.

One can show that such a constant c exists using a Chernoff bound. Let Ibottom−1 = [n]
and define a sequence Ibottom−1 ⊇ Ibottom ⊇ Ibottom+1 ⊇ . . . ⊇ Itop, such that for each i =
bottom, . . . , top, the function fIi is symmetric on the levels bottom, . . . , i of the restricted
hypercube {0, 1}Ii . For each i = bottom, . . . , top, given Ii−1 we apply Corollary 5.5 with
f = fIi−1

and r = i to obtain Ii ⊆ Ii−1, such that the restriction fIi of fIi−1
is symmetric

on level i, as well as on levels bottom, . . . , i− 1, as fIi is a restriction of fIi−1
.

By construction, it follows that if ntop ≥ k, then there exists an (n, k)-zero-fixing
source X, such that f is symmetric restricted to the levels bottom, . . . , top of X. By our

99

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

choice of bottom and top, with probability 1−δ/2 over a uniformly random x ∼ X, it holds
that x has Hamming weight in [bottom, top]. Let C be the set of outputs obtained by f
restricted to these levels of X. Note that |C| ≤ |top − bottom + 1| = O(

√
k · log(1/δ)).

Thus, by considering the event f(X) ∈ C, we see that the statistical distance between
the output of f on X, and the uniform distribution on m bits, is at least 1−δ/2−|C|/2m,
which is at least 1− δ, whenever m ≥ 0.5 log2(k) +O(log(1/δ)).

By Corollary 5.5, for every i = bottom, . . . , top, we have that |Ii| ≥ 2−O(m)·log(i−1)(|Ii−1|)
which is larger than 2−O(m) · log(k)(|Ii−1|). Therefore, if n > Tower(O(k3/2 ·

√
log(1/δ))),

then |Itop| ≥ k, as required.

5.5 Explicit Zero-Fixing Extractors for Double Log-

arithmic Entropy

In this section we prove Theorem 5.2. We repeat the statement of the theorem here for
the readers convenience.

Theorem 5.7. For any constant µ > 0, and n, k ∈ N, such that k ≥ (log log n)2+µ, there
exists an efficiently computable function

ZeroBFExt : {0, 1}n → {0, 1}m,

where m = Ω(k), with the following property. For any (n, k)-zero-fixing source X, it holds

that ZeroBFExt(X) is (2−k
Ω(1)

+ (k log n)−Ω(1))-close to uniform.

We start by proving the following lemma that, informally speaking, shows how to
efficiently split one fixed-weight source to two independent fixed-weight sources, each
with half the weight and roughly half the entropy of the original source.

Lemma 5.3. For every integer n, there exists an O(n)-time computable function

SplitInMedian : {0, 1}n → ({0, 1}n)2 ,

with the following property. Let X be an (n, k, w)-fixed-weight source, with k/10 ≤ w ≤
9k/10. Denote the two n bit outputs of SplitInMedian(X) by Xleft and Xright. Then,
there exists a random variable M , and deterministic functions kleft, kright of M , such that
conditioned on any fixing M = m, the following holds:

• The random variables Xleft, Xright are independent.

• Xleft is an (n, kleft, w/2− 1)-fixed-weight source.

• Xright is an (n, kright, w/2)-fixed-weight source, where kleft + kright + 1 = k.

Furthermore, for any ε > 0, it holds that

Pr
m∼M

[∣∣∣∣kleftk − 1

2

∣∣∣∣ ≥ ε

]
≤ 2−Ω(ε2·k) .

100

5.5 Explicit Zero-Fixing Extractors for Double Logarithmic Entropy

Proof. We first describe the algorithm for computing SplitInMedian(X), and then turn
to the analysis. Let 1 ≤ i1 < i2 < · · · < iw ≤ n be the (random) indices such that
Xi1 = Xi2 = · · · = Xiw = 1, and set M = iw/2 to be the median coordinate. We define
the n bit strings Xleft and Xright as follows:

(Xleft)i =

 Xi, 1 ≤ i < M ;

0, M ≤ i ≤ n.

(Xright)i =

 0, 1 ≤ i ≤M ;

Xi, M < i ≤ n.

The output of SplitInMedian(X) is then (Xleft, Xright). Clearly, the running-time of the
algorithm is O(n), as computing M and constructing Xleft, Xright can be carried out in
linear-time.

Let S ⊆ [n], with |S| = k, be the set of indices associated with X. That is, Xi = 0 for
all i 6∈ S, and X|S is uniformly distributed over all k bit strings with Hamming weight w.
Conditioned on the event M = m, it holds that conditioned on any fixing of the prefix
X1, . . . , Xm, the suffix Xm+1, . . . , Xn is sampled uniformly at random from all n−m bit
strings, with Hamming weight w/2, and zeros outside S ∩ {m + 1, . . . , n}. Since Xleft

and Xright are deterministic functions of these prefix and suffix, respectively, we have that
conditioned on any fixing of M , the random variables Xleft and Xright are independent.

As for the second and third items, we note that, for any value m, conditioned on the
event M = m, the prefix X1, . . . , Xm−1 is a fixed-weight source. Indeed, X1, . . . , Xm−1

has the same distribution as sampling a vector X ′ ∈ {0, 1}kleft , where kleft = |S ∩ [m− 1]|,
uniformly at random out of all such vectors with Hamming weight w/2− 1, and setting
X|S∩[m−1] = X ′, and Xi = 0 for all i ∈ [m−1]\S. Since Xleft is obtained by concatenating
zeros to the prefix X1, . . . , Xm−1, we have that Xleft is an (n, kleft, w/2 − 1)-fixed-weight
source. A similar argument shows that Xright is an (n, kright, w/2)-fixed-weight source,
where kright = |S ∩ {m+ 1, . . . , n}|. In particular, it holds that kleft + kright + 1 = k.

For the furthermore part of the lemma, we want to bound the probability that kleft
deviates from k/2, where the probability is taken with respect to the random variable M .
Recall that kleft is a deterministic function of M , given by kleft = |S ∩ [M − 1]|. Thus,

Pr
m∼M

[
kleft ≤

(
1

2
− ε
)
· k
]

= Pr
m∼M

[
|S ∩ [m− 1]| ≤

(
1

2
− ε
)
· |S|

]
=

(
k

w

)−1

·
(1/2−ε)·k∑
t=w/2

(
t

w/2

)(
k − t
w/2

)
≤ 2−Ω(ε2·k),

where the last inequality follows by applying Stirling’s approximation (or alternatively,
by approximating the binomial distribution by a uniform distribution, and applying a

101

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

Chernoff bound), and our assumption that k/10 ≤ w ≤ 9k/10. By symmetry, the same
upper bound holds for Pr

[
kleft ≥

(
1
2

+ ε
)
· k
]
, which concludes the proof.

For the proof of Theorem 5.7, we need to split the source to more than 2 independent
sources. The following corollary accomplishes that, based on Lemma 5.3, and a recursive
argument.

Corollary 5.8. For any integers n, c, where c is a power of 2, there exists an O(cn)-time
computable function

Splitter : {0, 1}n → ({0, 1}n)c ,

with the following property. Let X be an (n, k, w)-fixed-weight source, with k/3 ≤ w ≤
2k/3. Let (Y1, . . . , Yc) = Splitter(X), with Yi ∈ {0, 1}n for all i ∈ [c]. Then, there exist
random variables M1, . . . ,Mc−1, and deterministic functions k1, . . . , kc−1 of them, such
that conditioned on any fixing (M1, . . . ,Mc−1) = (m1, . . . ,mc−1), the following holds:

• The random variables Y1, . . . , Yc are independent.

• For every i ∈ [c], the random variable Yi is an (n, ki, wi)-fixed-weight source, with
wi ∈ [w/c− 1, w/c], and k1 + · · ·+ kc = k − c+ 1.

Furthermore, except with probability c · 2−Ω(k/(c·log2 c)) over the fixings of (M1, . . . ,Mc−1),
it holds that for all i ∈ [c], ki ≥ 0.9k/c.

Proof. Let d = log2 c. Consider a depth d binary tree T with c leaves. With each node v
of T , we associate a random variable Xv, defined recursively with respect to the depth, as
follows. Let r be the root of T . We define Xr = X. Let v be a node in T , that is not a leaf,
for which Xv was already defined. Denote by leftChild(v), rightChild(v) the left and right
children of v in T , respectively. Let ((Xv)left, (Xv)right) = SplitInMedian(Xv). We associate
the random variable (Xv)left with the vertex leftChild(v), and the random variable (Xv)right
with the vertex rightChild(v). Namely, XleftChild(v) = (Xv)left and XrightChild(v) = (Xv)right.
Let Mv be the random variable M , in the notation of Lemma 5.3, with respect to the
application of SplitInMedian to Xv. Let `1, . . . , `c be the c leaves of T . The output of
Splitter on input X is defined by

Splitter(X) = (X`1 , . . . , X`c) .

We now turn to the analysis. First, clearly, Splitter is computable in time O(cn), as it
involves c − 1 applications of SplitInMedian. Let h ∈ {0, 1, . . . , d − 1}, and let Vh be the
set of nodes of T with depth h. Let ε = 1/(20d). We prove the following, by induction
on h. Conditioned on any fixing of the random variables {Mv | v ∈ V0 ∪ V1 ∪ · · · ∪ Vh−1},
the following holds:

• The random variables {Xv | v ∈ Vh} are independent.

• For any v ∈ Vh, the random variable Xv is an (n, kv, wv)-fixed-weight source, with
wv ∈ [w/2h, w/2h − 1], and where kv is a deterministic function of the random
variables {Mu}u∈Pv , where Pv is the nodes on the path from the root r to v in T ,
not including v. Moreover,

∑
v∈Vh kv = k − h.

102

5.5 Explicit Zero-Fixing Extractors for Double Logarithmic Entropy

Furthermore, except with probability δh = 2h · 2−Ω(k/(c·log2 c)) over the fixings of {Mv | v ∈
V0 ∪ V1 ∪ · · · ∪ Vh−1}, it holds

∀v ∈ Vh
(

1

2
− ε
)h
≤ kv

k
≤
(

1

2
+ ε

)h
.

These claims clearly hold for h = 0. We now prove that the claims hold for h ≥ 1,
assuming they hold for 1, . . . , h − 1. By the induction hypothesis, conditioned on any
fixings of {Mv | v ∈ V0 ∪ V1 ∪ · · · ∪ Vh−2}, the random variables {Xv | v ∈ Vh−1}
are independent. Since {Xv | v ∈ Vh} = {XleftChild(v), XrightChild(v) | v ∈ Vh−1}, the
independence of the random variables {Xv | v ∈ Vh}, conditioned on the further fixings
of {Mv | v ∈ Vh−1}, follows by Lemma 5.3. The second item readily follows by the
induction hypothesis and Lemma 5.3.

As for the furthermore part, by the induction hypothesis, except with probability δh−1

over the fixings of {Mv | v ∈ V0 ∪ V1 ∪ · · · ∪ Vh−2}, it holds that

∀v ∈ Vh−1

(
1

2
− ε
)h−1

≤ kv
k
≤
(

1

2
+ ε

)h−1

.

One can easily verify that conditioned on this event, by our choice of ε, the hypothesis
of Lemma 5.3 is met when computing SplitInMedian(Xv), namely,

kv
10
≤ wv ≤

9kv
10

.

Thus, by the union bound, except with probability

δh−1 +
∑

v∈Vh−1

2−Ω(ε2·kv) , (5.1)

it holds that for all v ∈ Vh

kv
k

=
kv

kparent(v)

·
kparent(v)

k
≤
(

1

2
+ ε

)
·
(

1

2
+ ε

)h−1

=

(
1

2
+ ε

)h
,

where parent(v) is the parent of v in the tree T . Similarly,

kv
k

=
kv

kparent(v)

·
kparent(v)

k
≥
(

1

2
− ε
)
·
(

1

2
− ε
)h−1

=

(
1

2
− ε
)h

.

Since |Vh−1| = 2h−1, ε = 1/(20d) = O(1/ log c) and kv = Ω(k/2h) ≥ Ω(k/c), the error
expression in Equation (5.1) is bounded above by

δh−1 + 2h−1 · 2−Ω(k/(c·log2 c)) ≤ δh.

This concludes the inductive proof. The proof of the corollary follows by plugging h =
d.

103

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

For the proof of Theorem 5.7 we also need the following claim, which states that an
(n, k)-zero-fixing source is close to a convex combination of fixed-weight sources, with
weight roughly k/2.

Claim 5.3.1. Let X be an (n, k)-zero-fixing source. Then, X is 2−Ω(k)-close to a convex
combination of (n, k, w)-fixed-weight sources, with k/3 ≤ w ≤ 2k/3.

For the proof of the claim we make use of the following well-known fact.

Fact 5.4. For any integer n, and 0 < α < 1/2, it holds that

bαnc∑
k=0

(
n

k

)
≤ 2H(α)·n,

where H(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function.

Proof of Claim 5.3.1. We first note that X can be written as the convex combination

X =
k∑

w=0

λwXw,

where λw =
(
k
w

)
· 2−k, and Xw is an (n, k, w)-fixed-weight source. To see this, let S ⊆ [n],

|S| = k, be the set that is associated with the source X. Namely, X|S is uniformly
distributed, whereas X|Sc is fixed to 0. Sampling x ∼ X can be done in two steps. In
the first step, one samples a weight W according to a binomial distribution Bin(k, 1/2).
Namely, for any 0 ≤ w ≤ k, Pr[W = w] =

(
k
w

)
· 2−k. In the second step, one samples

a string x′ ∈ {0, 1}k uniformly at random among all strings with Hamming weight w.
Lastly, we set X|S = x′, and xi = 0 for all i 6∈ S. It is easy to verify that this two-steps
procedure yields the same distribution as sampling from the (n, k)-zero-fixing source X.
Note that the sampling done in the second step, conditioned on the event W = w, is
from an (n, k, w)-fixed-weight source, which we denote by Xw.

By Fact 5.4, we have that

2k/3∑
w=k/3

λw ≥ 1− 2 · 2(H(1/3)−1)·k = 1− 2−Ω(k).

This concludes the proof, as it shows that X is 2−Ω(k)-close to the convex combination

X =

2k/3∑
w=k/3

λwXw.

For the proof of Theorem 5.7 we also make use of the following lossless condenser due
to Rao [Rao09b].

104

5.5 Explicit Zero-Fixing Extractors for Double Logarithmic Entropy

Theorem 5.9 ([Rao09b]). For all integers n, k, there exists an efficiently computable
linear transformation Cond : {0, 1}n → {0, 1}k logn, such that for any (n, k)-bit-fixing
source X it holds that Cond restricted to X is one-to-one.

We are now ready to prove Theorem 5.7.

Proof of Theorem 5.7. We first describe the construction of ZeroBFExt and then turn to
the analysis. For the construction of ZeroBFExt we need the following building blocks:

• Let Li :
(
{0, 1}k logn

)c → {0, 1}` be the multi-source extractor from Theorem 2.4,
set to extract ` = Ω(k) bits from c independent (k log n, k)-weak-sources, with
k ≥ O(log2+µ(k log n)). By Theorem 2.4, it suffices to take c = O(1/µ).

• With c as above, let Splitter : {0, 1}n → ({0, 1}n)c be the function from Corollary 5.8.

• Let Cond : {0, 1}n → {0, 1}k logn be the lossless-condenser of Rao from Theorem 5.9.

With these building blocks, we compute ZeroBFExt(X) as follows. We first compute
(Y1, . . . , Yc) = Splitter(X). Secondly, for each i ∈ [c], we compute Zi = Cond(Yi). The
output is then ZeroBFExt(X) = Li(Z1, . . . , Zc).

We now turn to the analysis. By Claim 5.3.1, X is 2−Ω(k)-close to a convex com-
bination of (n, k, w)-weight-fixing sources {Xw}2k/3

w=k/3. Therefore, Splitter(X) is 2−Ω(k)-

close to a convex combination of the random variables {Splitter(Xw)}2k/3
w=k/3. We denote

((Yw)1, . . . , (Yw)c) = Splitter(Xw). Fix such w. By Corollary 5.8, conditioned on some
carefully chosen random variables, (Yw)1, . . . , (Yw)c are independent random variables.
Moreover, except with probability 2−Ω(k) with respect to the conditioning, it holds that
for all i ∈ [c], (Yw)i is an (n, k′, w/c)-weight-fixing source, with k′ ≥ 0.9k/c. Since(

k′

w/c

)
≥
(
k′

w/c

)w/c
≥
(

0.9k

w

)w/c
≥
(

0.9

2/3

)w/c
= 2Ω(k),

we have that H∞((Yw)i) = Ω(k) for all i ∈ [c], except with probability 2−Ω(k).

Recall that Zi = Cond(Yi). With the notation above, we have that Zi is 2−Ω(k)-close
to a convex combination of (Zw)i = Cond((Yw)i), where k/3 ≤ w ≤ 2k/3. Since (Yw)i is
contained in some (n, k)-bit-fixing source, Theorem 5.9 guarantees that Cond restricted to
the support of (Yw)i is one-to-one, and so H∞((Zw)i) = H∞((Yw)i) = Ω(k). Thus, except
with probability 2−Ω(k), we have that for all i ∈ [c], (Zw)i is a (k log n,Ω(k))-weak source.

This implies that ZeroBFExt(Xw) = Li((Zw)1, . . . , (Zw)c) is (2−k
Ω(1)

+ (k log n)−Ω(1))-close
to uniform, which completes the proof of the theorem as Li(X) is 2−Ω(k)-close to a convex

combination of {Li(Xw)}2k/3
w=k/3.

As for the running-time. Computing Y1, . . . , Yc by applying Splitter to X is done in
time O(n). Applying Rao’s condenser to each Yi can be done in poly(n)-time. Finally,
Li’s extractor runs in time poly(k log n) = o(n).

105

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

A comment regarding the error. As stated, the extractor ZeroBFExt in Theorem 5.2
has an error of 2−k

Ω(1)
+ (k log n)−Ω(1). This error is induced by the error of Li’s multi-

source extractor. Indeed, the error contributed by the other parts of the construction of
ZeroBFExt is only 2−Ω(k). The error of Li’s extractor, when applied to (n, k)-weak sources,

is stated to be n−Ω(1)+2−k
Ω(1)

. However, by inspection, one can see that Li’s extractor has
an error of (δn)O(1) + 2−k

Ω(1)
, for any desired parameter δ > 0. The running-time of the

extractor is poly(n/δ). Clearly, when one is interested in poly(n) running-time, then one
must take δ ≥ 1/poly(n). However, in our case, the inputs to Li’s extractor have length
O(k log n). Thus, we can set δ to be such that the total error in our application of Li’s

extractor is 2−k
Ω(1)

, and the running-time of that application would then be poly(2k ·log n),
which is o(n) for the parameters of interest, namely for k = o(log n). To summarize, the

error in Theorem 5.7 can be reduced to 2−k
Ω(1)

. We choose to state Theorem 5.2 as we
did so to be able to use Li’s extractor in a black-box fashion.

5.6 Bit-Fixing Extractors for Double-Logarithmic En-

tropy

In this section we prove Theorem 5.3. We restate the theorem here, allowing also for
non-constant error ε.

Theorem 5.10. For any integers n, k, and ε > 0, such that

k > log(log(n)/ε2) + 2 log log(log(n)/ε) +O(1),

there exists a function

QuasiBFExt : {0, 1}n → {0, 1}m,

where m = k − 2 log(1/ε) − O(1), with the following property. Let X be an (n, k)-bit-
fixing source. Then, QuasiBFExt(X) is ε-close to uniform. The running time of evaluating

QuasiBFExt is nO(log2(logn
ε

)).

Before proving Theorem 5.3, we sketch two proofs for the existence of (n, k)-bit-fixing
extractors, with double-logarithmic entropy. Our first proof relies on the Lóvasz local
lemma.

Lemma 5.5 (Lóvasz local lemma [EL75, Spe77]). Let E1, . . . , Ek be events in a probability
space, such that each event occurs with probability at most p, and such that each event is
independent of all but at most d events. If ep(d+ 1) ≤ 1, 5 then

Pr

[
k⋂
i=1

Ēi

]
> 0.

5Here e is the base of the natural logarithm.

106

5.6 Bit-Fixing Extractors for Double-Logarithmic Entropy

Existential proof-sketch based on the Lóvasz Local Lemma. Let f : {0, 1}n →
{0, 1}m be a random function. For any (n, k)-bit-fixing source X, let EX be the event
SD(f(X), Um) > ε (here the randomness is taken over f). Fix an (n, k)-bit-fixing source
X. By taking the union bound over all 22m test functions, Chernoff bound implies that

Pr
f

[EX] ≤ 22m · 2−Ω(2k·ε2) = p.

Consider any two bit-fixing sources X, Y . We note that if there exists a coordinate i ∈ [n],
in which both X and Y are fixed, then in order for X and Y to be dependent, it must
hold that Xi = Yi. Indeed, if Xi 6= Yi then X ∩ Y = ∅. Thus, for any (n, k)-bit-fixing
source X, there are at most d =

(
n
k

)
· 2k bit-fixing sources Y such that EX depends on

EY . One can easily verify that by taking

k = log log(n) + 2 log(1/ε) + log(log log(n) + 2 log(1/ε)) +O(1),

m = k − 2 log(1/ε)−O(1),

the hypothesis of Lemma 5.5 is met. Thus, even for k as above, there exists an (n, k)-
bit-fixing extractor, with error ε, that outputs m = k − 2 log(1/ε)−O(1).

Existential proof-sketch based on Rao’s linear lossless-condenser. Theorem 5.9
states that there exists a linear function Cond : {0, 1}n → {0, 1}k logn, such that for any
(n, k)-bit-fixing source X, the mapping Cond, restricted to X, is one-to-one. Since Cond is
linear, this implies that Cond(X) is a (k log n, k)-affine source. At this point, one can use a
simple probabilistic argument to show the existence of (n, k)-affine extractors, with error
ε, that outputs m = k−2 log(1/ε)−O(1) bits, as long as k ≥ log(n)+2 log(1/ε)+O(1). By
applying the latter (implicit) extractor to the affine source Cond(X), we obtain (n, k)-
bit-fixing extractors with parameters as in the proof-sketch based on the Lóvasz local
lemma.

We note that by iterating over all (2M)2N functions f : {0, 1}N → {0, 1}M , and

checking each of them against any of the possible
(

2N

K+1

)
· 22M pairs of an (N,K)-affine

source and a test function, one can find an (N,K)-affine extractor, with K = log(N) +
log log(N) + O(1) and M = K − O(1) output bits, in time 2O(2N ·logN). After the appli-
cation of Cond in the proof-sketch above, we only need (k log n, k)-affine extractors, with
k = log log n+ log log log n+O(1). Namely, we can set N = k log n, K = k and M = m.
Thus, the proof-sketch above, together with this brute-force search for affine extractors,
yields a construction of an (n, k)-bit-fixing extractors, in time 2n

O(log logn)
.

The proof of Theorem 5.3 follows the same argument as the second proof-sketch.
The improvement in running-time, from the 2n

O(log logn)
-time algorithm described above

to the stated nO((log logn)2), is obtained by using a more efficient construction of essentially-
optimal affine extractors, as capture by the following lemma.

Lemma 5.6. For every integer n and ε > 0, there exists an affine extractor

AExt : {0, 1}n → {0, 1}m,

107

5. ZERO-FIXING EXTRACTORS FOR SUB-LOGARITHMIC ENTROPY

for (n, k)-affine sources, with k = log(n/ε2) + log log(n/ε2) + O(1), and any m ≤ k −
2 log(1/ε) − O(1). The running-time of evaluating AExt at a given point x ∈ {0, 1}n is
22m · 2O(n·log(n/ε)).

The proof of Lemma 5.6 makes use of sample spaces that are almost k-wise indepen-
dent, introduced by Naor and Naor [NN93].

Definition 5.7 (Almost k-wise independence). Let n, k be integers such that k ≤n, and
let δ > 0. A random variable X over n bit strings is called (n, k, δ)-independent, if
for any S ⊆ [n], with |S| ≤ k, the marginal distribution X|S is δ-close to uniform, in
statistical distance.

We use the following explicit construction of Alon et al. [AGHP92].

Theorem 5.11 ([AGHP92]). For all δ > 0 and integers n, k, there exists an explicit
construction of an (n, k, δ)-independent sample space, with size (k log(n)/ε)2+o(1).

Proof of Lemma 5.6. For an integer k and δ > 0 which will be determined later, let
Z ∈ {0, 1}2n·m be a sample from a (2n ·m, 2k ·m, δ)-independent sample space. We index
a bit of the sample Z by a pair composed of x ∈ {0, 1}n and i ∈ [m], and denote the
respective random bit by Zx,i. Define the (random) function AExt : {0, 1}n → {0, 1}m by
AExt(x) = (Zx,1, . . . , Zx,m).

Let U ⊆ {0, 1}n be an affine subspace of dimension k, and let f : {0, 1}m → {0, 1} be
an arbitrary function, which we think of as a “test” function, or a distinguisher. Since
AExt restricted to U is a function of 2k ·m bits of Z, it holds that {AExt(u)}u∈U are 2k

random variables over {0, 1}m that are δ-close to uniform. Thus, the random variable
(with randomness coming from Z)

E
u∼U

[f(AExt(u))] = E
u∼U

[f(Zu,1, . . . , Zu,m)]

is δ-close, in statistical distance, to the random variable Eu∼U [f(Ru,1, . . . , Ru,m)], where
{Ru,i}u∈U,i∈[m] are 2k ·m uniformly distributed and independent random bits. Now, by
the Chernoff bound,

Pr
R

[∣∣∣∣ E
u∼U

[f(Ru,1, . . . , Ru,m)]− E
x∼{0,1}m

[f(x)]

∣∣∣∣ > ε

]
≤ 2−Ω(ε2·2k).

Thus,

Pr
Z

[∣∣∣∣ E
u∼U

[f(AExt(u))]− E
x∼{0,1}m

[f(x)]

∣∣∣∣ > ε

]
≤ 2−Ω(ε2·2k) + δ .

By the union bound taken over all affine subspaces U of dimension k and functions
f : {0, 1}m → {0, 1}, we get that as long as(

2n

k + 1

)
· 22m ·

(
2−Ω(ε2·2k) + δ

)
< 1,

108

5.6 Bit-Fixing Extractors for Double-Logarithmic Entropy

there exists a point in the sample space for Z that induces an (n, k)-affine extractor AExt
with error ε. By taking δ = 2−Ω(ε2·2k), one can verify that the equation above holds as
long as

k ≥ log(n/ε2) + log log(n/ε2) +O(1),

m ≤ k − 2 log(1/ε)−O(1).

We use the construction of a (2n · m, 2k · m, δ)-independent sample space from Theo-
rem 5.11. One can verify that the sample space size is 2O(n·log(n/ε)). One can then go
over each point in the sample space and check whether the point induces an (n, k)-affine
extractor with error ε. By the choice of parameters, such a point exists. Each point from
the sample space should be compared against

(
2n

k+1

)
· 22m pairs of an affine subspace and

a test function f : {0, 1}m → {0, 1}. Checking each fixed point in the sample space can
be done in time 22m · 2O(n·log(n/ε)). Hence, the total running-time is 22m · 2O(n·log(n/ε)), as
stated.

Proof of Theorem 5.10. The construction of QuasiBFExt is very simple, and is defined by

QuasiBFExt(x) = AExt(Cond(x)),

for all x ∈ {0, 1}n, where Cond is Rao’s linear lossless-condenser from Theorem 5.9. As
for the analysis, let X be an (n, k)-bit-fixing source. By Theorem 5.9, Y = Cond(X)
is a (k log n, k)-affine source. Therefore, Lemma 5.6 implies that AExt(Y) is ε-close to
uniform. It is straightforward to verify that the running-time and number of output bits
of QuasiBFExt is as claimed.

109

110

Chapter 6

Efficient Multiparty Protocols via
Log-Depth Threshold Formulae

6.1 Secure Multiparty Computation

Secure multiparty computation (MPC) enables a set of parties to jointly accomplish some
distributed computational task, while maintaining the secrecy of the inputs and the
correctness of the outputs in the presence of coalitions of dishonest parties. Originating
from the seminal works of [Yao82b, GMW87, BGW88, CCD88], secure MPC has been
the subject of an enormous body of work.

Despite this body of work, MPC protocols remain quite complicated and their security
is difficult to prove. In the paper [CDI+13] that is covered in this chapter, we propose a
new general approach to the construction of efficient multiparty protocols in the presence
of an honest majority. Our approach enables us to obtain conceptually simple derivations
of known feasibility results (or slightly weaker variants of such results), and also to obtain
new results.

Our approach is inspired by, and builds on, the “player emulation” technique of Hirt
and Maurer [HM00], who obtain secure MPC protocols by reducing the construction of
an n-party protocol to the task of constructing a protocol π for a constant (e.g., three or
four) number of parties. The motivation of [HM00] was to obtain n-party protocols that
are secure with respect to general (non-threshold) adversary structures. A disadvantage
of their n-party protocols is that their complexity grows exponentially with n. This seems
inevitable when considering arbitrary adversary structures.

Our motivation is very different: We would like to use the atomic protocol π for con-
structing efficient n-party protocols in the traditional MPC setting of threshold adversary
structures. Since π only involves a small number of parties, its design may employ simpler
techniques that do not scale well with the number of corrupted parties. Thus, our goal
is to simplify the design of efficient n-party protocols by reducing it to the design of a
simpler atomic protocol π.

To make the approach of [HM00] scale with the number of parties, we introduce a new

111

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

complexity-theoretic primitive: a logarithmic-depth formula1 which is composed only of
constant-size threshold gates and computes an n-input threshold function. The problem
of constructing such formulae is closely related to a classical problem in complexity theory.
In this work we also make a contribution to this complexity-theoretic problem, which may
be of independent interest.

In addition to providing conceptually simple protocols, our approach is very general
and can be applied in a variety of settings and models. In contrast to most traditional
MPC protocols, it is not tied to some underlying algebraic structure. We demonstrate this
generality by obtaining new results on MPC over black-box groups and other algebraic
structures, improving on previous results from the literature.

Before proceeding to describe the details of our approach, we note that the goal of
designing MPC protocols whose complexity grows (only) polynomially with the number of
parties also has relevance to two-party cryptography. Indeed, there are general techniques
for applying MPC protocols with security in the presence of an honest majority (where
the number of parties grows with the security parameter) towards two-party tasks such
as zero-knowledge proofs and secure two-party computation [IKOS09, IPS08].

6.2 Our Approach

In the following, for simplicity, we consider the case of perfect security against a passive
adversary. In this setting, parties are honest but curious. That is, they follow the protocol
but may attempt to learn secret information based on what they see. We note that, in
contrast to the norm, the extension of this approach to the case of an active adversary is
relatively straightforward.

We first give an overview of the player emulation technique of Hirt and Maurer [HM00]
and then proceed to describe how we overcome the exponential blow-up incurred by
[HM00] in the case of threshold adversary structures. Recall that security of MPC proto-
cols is defined by comparing a real protocol to an ideal protocol, in which, in addition to
the parties involved in the computation, there is a trusted party. A protocol is deemed
secure if for every adversary in the real protocol controlling a subset of the parties, there
is an equivalent adversary controlling the same subset in the ideal protocol.

The technique from [HM00] is to reduce the design of n-party protocols to the design of
protocols that support only 3 parties (the minimal number of parties for perfect security
in the passive security model).

We proceed to present an informal description of the reduction. Indeed, suppose that
the 3-party case has been solved. That is, for every computational task involving three
parties there exists a secure protocol that securely implements this task when at most one
of the parties is passively corrupted.2 We describe how to use this protocol to securely

1A formula is a circuit with fan-out 1. A logarithmic-depth formula (more precisely, infinite family
of formulas) is one whose depth is O(log n), where n is the number of inputs. Throughout this paper we
consider only monotone formulas without negations or constants.

2Since we deal with perfect security, the size of the secure protocol depends only on the size of the
original protocol. In particular, any constant size protocol can be implemented securely in constant size.

112

6.2 Our Approach

implement computational tasks using a larger number of parties.
Consider n parties that wish to securely accomplish some joint computational task.

It is best to think of this task as being specified by an ideal protocol π0 which involves, in
addition to the n parties, a trusted party τ . The ideal protocol is secure (by definition)
even if the adversary controls any subset of the parties that does not contain τ .

Consider a new protocol π1 that involves the n original parties but where we replace
the trusted party τ with three new virtual parties v1, v2, v3. Since in π0, the trusted
party τ is just involved in a computational task, we can use the given 3-party protocol
to simulate τ using v1, v2, v3. When is the new protocol π1 secure? Since π0 was only
insecure whenever the adversary controlled τ and since the 3-party protocol is secure as
long as the adversary controls at most one of the virtual parties, π1 is secure as long as
the adversary does not control two or more of the virtual parties.

We continue this process by designing a new protocol π2 in which the virtual party
v1 is itself simulated by three new virtual parties w1, w2, w3. Since π1 is only insecure
whenever the adversary controls more than one of v1, v2, v3 and since the protocol for
emulating v1 is secure when at most one of w1, w2, w3 is controlled by the adversary, π2

is secure as long as the adversary does not control either v2 and v3 or one of v2, v3 and
two or more of w1, w2, w3.

We continue in this process simulating virtual parties by more virtual parties. The
sets of corrupted parties against which the resulting protocol is secure can be described
by looking at a formula composed of 3-input majority gates which we denote by Maj3.
Each wire represents a virtual party. The protocol π1 can be represented by a simple
formula F1 consisting of a single Maj3 gate where the three input wires correspond to the
virtual parties v1, v2, v3 and the output wire corresponds to τ . We assign to each input
wire corresponding to an honest party a value of 0 and a value of 1 to those corresponding
to dishonest parties. It can be easily verified that the protocol is secure whenever the
formula F1 evaluates to 0.

Similarly, the protocol π2 can be represented by a formula F2 which is constructed
from F1 by connecting the input wire corresponding to v1 with an additional Maj3 gate
with three new input wires (corresponding to w1, w2, w3). It is easy to verify that the
new protocol is secure whenever the formula evaluates to 0.

Suppose that we continue on like this but instead of arbitrarily choosing which virtual
party to simulate, we choose it according to some formula F , composed only of Maj3
gates.3 Once we reach the input layer of the formula, we associate each input variable to
a real party and every remaining virtual party is simulated by the real party associated
with the corresponding input wire.

As above, the protocol is secure against every set T of parties on which the formula
F evaluates to 0. (Here and in the following we associate a set T with its characteristic
vector χT .) Thus, to obtain a protocol that is secure for a particular adversary structure,
it suffices to provide a formula that evaluates to 0 on all sets in the structure. Since, in
contrast to [HM00], our goal is merely to obtain security in the presence of an honest

3Actually, [HM00] do not present their construction in the terminology of Maj3 formulae; we use this
presentation since it is more intuitive and is better suited for our purposes.

113

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

majority, we need only to construct a formula that computes the majority function (using
only Maj3 gates and no constants).

Such a formula was implicitly constructed by Hirt and Maurer [HM00] for general Q2

functions4 and in particular for majority. Unfortunately, the formula of [HM00] has linear
depth. This yields a protocol whose complexity grows exponentially with the number of
parties, since when traversing the formula we increased the complexity of the protocol
by a constant multiplicative factor (corresponding to the number of operations in the
3-party protocol) at every layer.

To overcome the exponential blowup, we replace the formula of [HM00] by a logarithmic-
depth formula (which computes the majority function using only Maj3 gates). Using the
formula-based protocol described above, the logarithmic depth results in an efficient pro-
tocol, namely one whose complexity only grows polynomially with the number of parties.
In Section 6.3 we describe the construction of a good “approximation” of such a formula
as well as exact constructions under standard complexity-theoretic assumptions.

This approach is indeed very general and can be used in different models of secure
MPC. For example, it can be used to obtain both passive security as outlined above
and active security by using an underlying 4-party protocol that is secure against one
active party and a log-depth threshold formula composed of two-out-of-four threshold
gates (denoted by Th4

2) which we also construct (see Section 6.3).

In fact, this reduction gives us a “cookbook” for designing secure multiparty protocols.
The first step is to design a protocol for a constant number of parties that is secure
against one dishonest party and the second step is to use a logarithmic-depth threshold
from thresholds formula to obtain an efficient multiparty protocol that is secure against
a constant fraction of corrupted parties.

We demonstrate the generality of this approach by deriving protocols in both passive
and active settings and in different MPC models which differ in the type of underlying
algebraic structure, including models for which no protocols were known. We also obtain
conceptually simple protocols for classical problems in distributed computing such as
broadcast protocols.

Simplified feasibility results. The classical results of Ben-Or et al. [BGW88] and
Chaum et al. [CCD88] allow n parties to evaluate an arbitrary function, using secure
point-to-point channels, with perfect security against t < n/2 passively corrupted parties
or t < n/3 actively corrupted parties. We can derive conceptually simpler variants of
these results by applying our approach with π being a 3-party or 4-party instance of
the simple MPC protocol of Maurer [Mau06]. On the one hand our results are slightly
weaker because they either need the threshold t to be slightly sub-optimal or alternatively
require (standard) complexity theoretic assumptions to construct an appropriate formula
for implementing the protocol. It is instructive to note that the complexity of Maurer’s
protocol grows exponentially with the number of parties. Our approach makes this a

4A monotone function f : {0, 1}n → {0, 1} is said to be of type Qd if f(x1) = f(x2) = . . . = f(xd) = 0
implies that x1 ∨ x2 ∨ . . . ∨ xd 6= 1n.

114

6.2 Our Approach

non-issue, as we only use the protocol from [Mau06] with a constant number of parties.5

MPC over blackbox algebraic structures. There has been a considerable amount of
work on implementing MPC protocols for computations over different algebraic structures
such as fields, rings, and groups. Algebraic computations arise in many application sce-
narios. While it is possible in principle to emulate each algebraic operation by a sequence
of boolean operations, this is inefficient both in theory and in practice. In particular,
the communication complexity of the resulting protocols grows with the computational
complexity of the algebraic operations rather than just with the bit-length of the inputs
and outputs. This overhead can be avoided by designing protocols which make a black-
box (i.e., oracle) use of the underlying structure. The advantage of such protocols is that
their communication complexity and the number of algebraic operations they employ are
independent of the complexity of the structure.

MPC over rings and k-linear maps. The work of Cramer et al. [CFIK03] shows
how to efficiently implement secure MPC over blackbox rings. We obtain a simpler
derivation of such a protocol by noting that the simple protocol of Maurer [Mau06]
directly generalizes to work over a blackbox ring. As before, one could not apply this
protocol directly because its complexity is exponential in the number of parties. We show
how to use a similar approach for obtaining the first blackbox feasibility results for MPC
over k-linear maps.

MPC over groups. The problem of MPC over blackbox groups was introduced by
Desmedt et al. [DPSW07] and further studied in [SYT08, DPS+12b, DPS12a]. 6

To apply our approach in the group model, we need to specify the atomic protocol
π that we use. For the case of passive security, we directly construct a simple 3-party
protocol that has security against one corrupted party. This protocol is loosely based on
a protocol by Feige et al. [FKN94] and considerably simplifies the 3-party instance of a
general result from [DPS+12b].

In the active security model, we rely on the recent work of [DPS12a] who obtain
the first MPC protocols with active security in the group model. The complexity of
the protocol of [DPS12a] grows exponentially with the number of parties. However, we
only need to employ the [DPS12a] protocol for four parties and so we do not suffer the
exponential blowup. Thus, we settle the main problem left open in [DPS12a] by applying
our technique to an instance of their results.

5While in the present work we apply our approach only to perfectly secure protocols, one could apply
a similar technique to derive the result of Rabin and Ben-Or [RBO89], namely a statistically secure
protocol which tolerates t < n/2 actively corrupted parties.

6 Interestingly, group-based MPC with low security threshold was implicitly used in the recent work
of Miles and Viola on leakage-resilient circuits [MV13]. It seems likely that efficient group-based MPC
protocols with near-optimal security threshold, such as those obtained in our work, can be useful in this
context.

115

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

We also obtain the first two-party MPC protocols over blackbox groups. In the pas-
sive corruption model, we combine a group product randomization technique due to
Kilian [Kil88] with a “subset sum” based statistical secret sharing of group elements. We
then get security against active corruptions by combining this two-party protocol with
our efficient n-party protocol for the active model via the IPS compiler [IPS08].

Broadcast. Broadcast is one of the most basic problems in distributed computing.
Recall that in a broadcast protocol a broadcaster wants to send a message to all other
parties. A broadcast protocol should end with all parties holding the same value, even if
some of the parties, possibly including the broadcaster, behave adversarially. Obtaining
efficient broadcast protocols is a highly nontrivial task [PSL80, Dol82, GM98]. Our
generic approach for MPC protocols can be used to directly construct simple broadcast
protocols for t < n/3 corrupted parties. We also get a simplified proof of a result of Fitzi
and Maurer [FM00], showing that an ideal primitive allowing broadcast for 3 parties
(so-called 2-cast) implies broadcast with t < n/2 corrupted parties. Our proof technique
also yields broadcast for the more general case of Q2 adversaries which was previously an
open problem.

6.3 Threshold Formulae from Threshold Gates

Motivated by the above applications to MPC, we consider the problem of constructing a
logarithmic-depth threshold formula from threshold gates. Before discussing the general
problem, we first discuss the special case of constructing a logarithmic depth formula
composed of Maj3 gates that computes the majority function. Note that this is exactly
the type of formula required in the setting of passive MPC security.

6.3.1 Majority from majorities.

A closely related problem was considered by Valiant [Val84] who proved the existence of
a logarithmic-depth monotone formula that computes the majority function where the
formula uses And and Or gates, both of fan-in 2. As noted independently by several
authors [Mil92, GM96, Zwi96, Gol11b], a slight modification of Valiant’s argument shows
the existence of a logarithmic-depth formula composed of Maj3 gates that computes the
majority function.

Valiant’s proof is based on the probabilistic method and is non-constructive. Namely,
the proof only assures us of the existence of a formula with the above properties, but
does not hint on how to find it efficiently. Motivated by the applications presented in
Section 6.2, we ask whether Valiant’s proof can be derandomized using only Maj3 gates
and no constants.7 We raise the following conjecture:

7We cannot allow the use of the constant 0, as this would correspond to assuming parties to be
incorruptible. The use of the constant 1 alone is not helpful in our context.

116

6.4 Our Results

Conjecture 6.1 (Majority from Majorities). There exists an algorithm A that given an
odd integer n as input, runs in poly(n)-time and generates a formula F on n inputs, with
the following properties:

• F consists only of Maj3 gates and no constants.

• depth(F) = O(log n).

• F computes the majority function on n inputs.

A derandomization for Valiant’s proof for formulas over And and Or gates follows from
the seminal paper of Ajtai, Komlós and Szemerédi [AKS83], though the latter does not
seem to imply a derandomization in the context of Maj3 gates, where constants are not
allowed.8

In this work we make a significant progress towards proving Conjecture 6.1. In par-
ticular, we prove that relaxed variants of the conjecture hold. In addition, we show that
the conjecture follows from standard complexity assumptions, namely, E , DTIME(2O(n))
does not have 2εn-size circuits for some constant ε > 0. Note that the latter follows from
the existence of exponentially hard one-way functions.9

6.3.2 Threshold formulae from threshold gates.

Motivated by applications to the active MPC setting, and being a natural complexity-
theoretic problem on its own, we initiate the study of a generalization of the majority
from majorities problem, which we call the threshold from thresholds problem.

For integers 2 ≤ j ≤ k, define the threshold function Thkj : {0, 1}k → {0, 1} as follows.

Thkj (x) = 1 if and only if the Hamming weight of x is at least j. Note that Maj3 = Th3
2.

Unlike the majority from majorities problem, it is not a priori clear what threshold
function, if any, can be computed by a log-depth formula composed only of Thkj gates,
even if no explicit construction is required. We make significant progress also on this
question. Roughly speaking, we provide an explicit construction of a logarithmic depth
formula composed solely of Thkj gates, that well approximates Thnn/m, where m = k−1

j−1
.

For further details, see Section 6.4.3.

6.4 Our Results

We first describe the applications of our approach in cryptography and distributed com-
puting, and then proceed to the complexity-theoretic results.

8Note that And and Or gates can be implemented using Maj3 gates and constants.
9We find it curious that perfectly secure MPC results are based on the existence of (sufficiently strong)

one-way functions.

117

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

6.4.1 Cryptographic results

We start by stating known results that we re-derive using our approach, and later state
our new results.

In the passive Ring-MPC model, we get the following results.

• If the majority from majorities conjecture (Conjecture 6.1) holds then we obtain an
explicit MPC protocol that has optimal security in the passive model. That is, it is
secure as long as at most a 1

2
− Ω(1

n
) fraction of the n parties (more precisely, t <

n/2) are passively corrupted. As noted above and stated formally in Theorem 6.2,
Conjecture 6.1 follows from widely-believed conjectures in complexity theory and
cryptography.

• An unconditional explicit and close to optimal protocol in the passive model in
which the fraction of dishonest parties is at most 1

2
−2−O(

√
logn) out of the n parties

(in contrast to the optimal threshold of 1
2
− Ω(1

n
)).

• A randomized construction of an optimal protocol in the passive model. By ran-
domized construction we mean that the protocol is constructed by a randomized
algorithm which may fail with negligible (undetectable) probability, but otherwise
outputs the description of a perfect protocol.

We obtain the following result in the active Ring-MPC model.

• An explicit but non-optimal protocol that is secure against any active adversary
that controls at most a 1

3
− Ω(1√

logn
) fraction of the n parties (in contrast to the

optimal bound of 1
3
− Ω(1

n
)).

Next we state our new results in the blackbox group model, introduced by Desmedt
et al. [DPSW07, DPS+12b]. In this model the function computed by the protocol is
specified by an arithmetic circuit over a (possibly non-Abelian) group, and the parties
are restricted to making blackbox access to the group. (This includes oracle access to the
group operation, taking inverses, and sampling random group elements.) In particular,
the number of group operations performed by the protocol should not depend on the
structure of the group or the complexity of implementing a group operation using, say, a
Boolean circuit.

• Group-MPC, passive: The best explicit protocol of [DPS+12b] offers perfect se-
curity against a 1

nε
fraction of passively corrupted parties, for any constant ε > 0,

where n is the total number of parties. We improve upon the latter by con-
structing an explicit protocol that has perfect security against an (almost optimal)
1
2
− 2−O(

√
logn) fraction of passively corrupted parties. Alternatively, we get an op-

timal bound of 1
2
− Ω(1

n
) assuming the majority from majorities conjecture, via

a non-uniform construction, or under standard derandomization or cryptographic
assumptions. Lastly, we also obtain a protocol with an optimal bound of 1

2
−Ω(1

n
)

with a running time that is only quasi-polynomial in the number of parties .

118

6.4 Our Results

• Group-MPC, active: In a recent work, Desmedt et al. [DPS12a] constructed a
secure MPC protocol in the group model with security against an active adversary.
However, their result only gives a protocol whose complexity depends exponentially
on the number of parties, regardless of the corruption threshold. We construct an
efficient secure MPC protocol in the group model where an active adversary can
control (an almost optimal) 1

3
− Ω(1√

logn
) fraction of the n parties.

• Secure two-party computation over groups: We construct the first secure
two-party protocols over blackbox groups. Our protocols offer statistical security
against active corruptions (assuming an oblivious transfer oracle) and rely on the
afforementioned n-party protocols over black-box groups.

Finally, our protocols for the Ring-MPC model described above can be generalized to
yield the following new result for MPC over k-linear maps.

• MPC over k-linear maps: We show that, for any constant k and any basis
B of k-linear maps over finite Abelian groups, there are efficient MPC protocols
for computing circuits over B which only make blackbox access to functions in B
and group operations. This generalizes previous results for MPC over blackbox
rings [CFIK03], which follow from the case k = 2, and can potentially be useful in
cryptographic applications that involve complex bilinear or k-linear maps. These
protocols are perfectly secure against a 1

k
−Ω(1√

logn
) fraction of passively corrupted

parties or a 1
k+1
− Ω(1√

logn
) fraction of actively corrupted parties.

6.4.2 Distributed computing results

Broadcast. It is well known that broadcast can be implemented over point-to-point
channels if and only if less than a third of the parties are actively corrupted [PSL80, Dol82]
or, more generally, if and only if no three of the subsets the adversary may corrupt cover
the entire set of parties [HM00, FM98], a so called Q3-adversary.

In this work we show that a trivial broadcast protocol for 4 parties where one is
actively corrupted easily implies the result of [FM98] using existing constructions of
(super-logarithmic depth) formulae. Substituting instead our own logarithmic depth
formula constructions implies a simple polynomial-time broadcast protocol for less than
n(1

3
− Ω(1√

logn
)) corrupted parties.

Broadcast from 2-cast. In [FM00], Fitzi and Maurer identify a minimal primitive that
allows to improve the n

3
corruption threshold: if we are given the ability to broadcast

among any subset of 3 parties for free, a so-called 2-cast primitive, then broadcast becomes
possible when less than n

2
parties are corrupted. It is natural to ask whether 2-cast also

implies broadcast secure against general Q2-adversaries (where no two corruptible subsets
cover the entire set of parties). This problem was previously open.

We apply our approach to construct broadcast protocols based on a 2-cast primitive.
Together with existing constructions of (super-logarithmic depth) formulae composed of

119

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

majority3-gates, this immediately implies a construction of broadcast from 2-cast for every
Q2-adversary, resolving the above problem. Substituting instead our logarithmic-depth
formula constructions, we get a simplified derivation of polynomial-time protocols for the
case of an honest majority considered in [FM00]. We do not know if the formula based
approach also implies the results in [CFF+05], which consider generalizations of the 2-cast
primitive.

6.4.3 Complexity-theoretic results

In this section we describe our results on constructing threshold formulae from threshold
gates. For the special case of computing majority from Maj3 gates we obtain stronger
results which we state first.

Majority from majorities

Our first complexity-theoretic result shows that given a small promise on the bias of
the input (defined as the difference between the normalized Hamming weight and 1/2),
Conjecture 6.1 holds.

Theorem 6.1. There exists an algorithm A that given an odd integer n as input, runs
in poly(n)-time and computes a formula F on n inputs, with the following properties:

• F consists only of Maj3 gates and no constants.

• depth(F) = O(log n).

• ∀x ∈ {0, 1}n such that bias(x) ≥ 2−O(
√

logn) it holds that F (x) = majority(x).

We note that the proof of Theorem 6.1 also gives a construction of a formula that
computes the majority function exactly (i.e., without a promise on the bias) but with
depth that is only poly-logarithmic (rather than logarithmic). Our second result shows
that under standard complexity hardness assumptions, Conjecture 6.1 holds.

Theorem 6.2. If there exists an ε > 0 such that E , DTIME(2O(n)) does not have 2εn-
size circuits then Conjecture 6.1 holds. In particular, if there exist exponentially hard
one-way functions then Conjecture 6.1 holds.10

In fact, the proof of Theorem 6.2 explicitly presents an algorithm for constructing
a formula as in Conjecture 6.1 given the truth table of any function in E, on a suitable
number of inputs, that cannot be computed by 2εn-size circuits. Moreover, the assumption
made in Theoerem 6.2 can be relaxed.

10A one-way function f is exponentially hard if there exists an ε > 0 such that every fam-
ily of 2εn-size circuits can invert f with only 2−εn probability. If there exists such a function
f , then the language Lf is in E but does not have 2εn-size circuits, where Lf = {(y, x′, 1n) :
y has a preimage of length n under f which starts with x′}.

120

6.4 Our Results

Thresholds formulae from threshold gates

Lemma 6.2. There exists an algorithm A that given t, j, k ∈ N as input, where j, k are
constants in t such that j ≥ 2 and k ≥ 2j − 1,11 runs in exp(t)-time and generates a
formula F with the following properties:

• F has mt+ 1 inputs, where m =
⌊
k−1
j−1

⌋
.

• F consists only of Thkj gates and no constants.

• depth(F) = O(t).

• ∀x ∈ {0, 1}mt+1 it holds that F (x) = Thmt+1
t+1 (x).

Lemma 6.2 generalizes results of [AR63, HM00, BIW10], who proved it for particular
values of j and k, and uses a similar technique. We note that the depth of the formula
generated in Lemma 6.2 is linear, which is too large for our applications. Nevertheless,
the following theorem, which uses Lemma 6.2 as a building block, shows that a formula
with logarithmic depth can be generated efficiently assuming a sufficient “bias” on the
input.

Theorem 6.3. There exists an algorithm A that given n, j, k ∈ N as input, where j, k
are constants in n such that j ≥ 2 and k ≥ 2j − 1, runs in poly(n)-time and generates a
formula F on n inputs, with the following properties:

• F consists only of Thkj gates and no constants.

• depth(F) = O(log n).

• ∀x ∈ {0, 1}n with normalized Hamming weight at least 1
m

+ Ω(1√
logn

), it holds that

F (x) = 1, where m =
⌊
k−1
j−1

⌋
.

• ∀x ∈ {0, 1}n with normalized Hamming weight at most 1
m
− Ω(1√

logn
), it holds that

F (x) = 0.

Note that Theorem 6.1 is not a special case of Theorem 6.3 (with j = 2, k = 3) as
the required promise on the bias in Theorem 6.1 is exponentially smaller than that in
Theorem 6.3.

We do not know whether an analog of Conjecture 6.1 is plausible for the threshold
from thresholds problem, even without the time-efficiency requirement. Theorem 6.3
might serve as evidence for the affirmative. However, the probabilistic argument used in
the majority from majorities problem (see, e.g., [Gol11b]) breaks for this more general
case. We consider this to be an interesting open problem for future research.

11Throughout the paper we assume, without loss of generality, that k ≥ 2j − 1. The complementary
case can be reduced to this one by using Thk

k−j+1 gates and interpreting 0 as 1 and vice versa.

121

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

6.5 Proof Overview of Complexity-Theoretic Results

In this section we give an overview of our complexity-theoretic constructions. For sim-
plicity, we start by giving an overview of our construction of a logarithmic-depth formula
composed of Maj3 gates, and no constants, that computes the majority function for in-
puts with constant bias. That is, we informally describe an efficient algorithm that given
n, ε as inputs, where ε > 0 is constant in n, outputs a logarithmic-depth formula with n
inputs which computes the majority function correctly on inputs with bias at least ε. It
is not hard to see that it is enough to construct a logarithmic-depth circuit, since such a
circuit can be efficiently converted to an equivalent logarithmic-depth formula.

To this end, we design an algorithm called ShrinkerGenerator that given n, ε as inputs,
generates a constant-depth circuit Shrinker with n inputs and n

2
outputs, composed of

Maj3 gates and no constants, such that

∀x ∈ {0, 1}n bias(x) ≥ ε =⇒ bias(Shrinker(x)) ≥ ε.

Thus, Shrinker shrinks the number of variables to half while maintaining the bias, as-
suming the input has a sufficiently large bias. By repeatedly calling ShrinkerGenerator on
inputs n, n

2
, n

4
, . . . , 2 (with the same ε) and concatenating the resulting circuits, one gets

a logarithmic-depth circuit that computes the majority function assuming the input has
large enough bias.

A key object we use in the design of ShrinkerGenerator is a Boolean sampler. Roughly
speaking, a Boolean sampler is a randomized algorithm which on input x ∈ {0, 1}n
approximates the Hamming weight of x by reading only a small number of the bits of
x. More precisely, a (d, ε, δ)-Boolean sampler is a randomized algorithm that on input
x ∈ {0, 1}n with normalized Hamming weight ω, samples at most d bits of x, and outputs
β ∈ [0, 1] such that Pr[|ω − β| ≥ ε] ≤ δ.

We will use a special type of samplers which take their samples in a non-adaptive
fashion, and their output is simply the average of the sampled bits. For any ε, δ > 0
there exist efficient (d, ε, δ)-Boolean samplers, with d = O(ε−2 · δ−1), that on inputs of
length n use only log n random bits.

Because such a sampler is non-adaptive and simply outputs the average of the sampled
bits, it can be represented as a bipartite graph G = (L,R,E), with |L| = |R| = n. For
an input x ∈ {0, 1}n, the i’th vertex in L is labeled with the i’th bit of x. Each vertex
in R represents one of the possible log n bit random strings used by the sampler. Each
right vertex r is connected to the d left-vertices that are sampled by the algorithm when
r is used as the random string.

The algorithm ShrinkerGenerator on inputs n, ε starts by constructing a graph G that
represents a (d, ε

2
, 1

8
)-Boolean sampler, with d = poly(1

ε
) = O(1). It then arbitrarily

chooses half of the right vertices in G and discards the rest. This gives a bipartite graph
G′ = (L′, R′, E ′) with |L′| = n, |R′| = n

2
and constant right-degree d. The circuit Shrinker

that the algorithm ShrinkerGenerator outputs is given by placing a circuit that computes
the majority function on d inputs for every right vertex. The inputs of this majority
circuit are the neighbors of the respective right vertex. Note that as d is constant, a

122

6.5 Proof Overview of Complexity-Theoretic Results

constant-depth circuit that computes the majority function on d inputs can be found in
constant time.

As for the correctness of the construction, assume now that x ∈ {0, 1}n has some
constant bias ε and, without loss of generality, assume that the bias is towards 1 (i.e.,
wt(x) ≥ (1

2
+ ε)n). Then, by the guarantee of the sampler, for all but 1

8
of the right

vertices in the original graph G, the fraction of neighbors with label 1 of a right vertex
is at least 1

2
+ ε− ε

2
> 1

2
. Thus, all but 1

8
of the (constant-size) majority circuits located

in R output 1. Hence, the fraction of majority circuits that output 0 in R′ is at most
n/8
n/2

= 1
4
≤ 1

2
− ε, as desired.

6.5.1 Supporting sub-constant bias

For sub-constant ε, the sampler technique described above is wasteful, as it requires us
to use a sequence of O(log n) layers with fan-in O(ε−2). For sub-constant ε, this results
in a circuit with a super-logarithmic depth. However, we observe that one layer of fan-in
O(ε−2) circuits is enough to amplify the bias from ε to 0.4 (rather than just keep the bias
at ε). This reduces us to the constant bias case, which can be solved as above with an
additional O(log n)-depth.

Thus, in order to obtain an O(log n)-depth circuit on n inputs, that computes majority
correctly for inputs with bias at least ε, it is enough to construct an O(log n)-depth circuit
with O(ε−2) inputs that computes majority correctly on all inputs.

Using a naive brute-force algorithm, one can efficiently find an optimal-depth circuit
on roughly log n inputs that computes majority. By plugging this circuit into the above
scheme, one immediately gets an O(log n)-depth circuit that computes majority on n
inputs with bias roughly ε = Ω(1√

logn
).

We improve on this by using an additional derandomization idea. Specifically, we
construct an O(log n)-depth circuit on 2O(

√
logn) inputs, that computes majority (under

no assumption on the bias). Thus, we obtain an explicit construction of a circuit that
computes majority assuming the bias is at least ε = 2−O(

√
logn).

We first describe a randomized construction of an O(logm)-depth circuit on m inputs
for majority, where m is set, in hindsight, to 2O(

√
logn). Our construction only uses

O(log2m) random bits (compared to poly(m) random bits used in Valiant’s construction).
We then show how to derandomize this construction.

Our randomized construction works as follows. Consider an input x ∈ {0, 1}m with
bias ε. Suppose that we sample uniformly and independently at random 3 bits of x and
compute their majority. It is shown in [Gol11b] that the majority’s bias is at least 1.2ε
(as long as ε is not too large).

Thus, by placing m majority gates of fan-in 3, and selecting their inputs from x
uniformly and independently at random, the output of the m majority gates will have bias
of at least 1.1ε with overwhelming probability. By composing O(log (1/ε)) such layers, we
can amplify the bias to a constant. Note that this construction uses O(m · logm · log(1/ε))
random bits.

To save on the number of random bits used (which is essential for the derandomization

123

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

step), instead of sampling the inputs of each one of the m gates uniformly at random, we
choose them in each layer using a 6-wise independent hash function. While 3-wise inde-
pendence suffices for the expectation of the bias to be as before, the 6-wise independence
guarantees that the outputs of the majority gates in each layer are pairwise independent.
Using tail inequalities we show that, with probability 1− o(1), the bias increases in each
layer as before.

By composing O(log (1/ε)) such layers, each of which requires O(logm) random bits,
we obtain a circuit as desired. The total number of random bits used is O(log (m) ·
log (1/ε)), which is bounded by O(log2m). We derandomize the construction by placing
all 2O(log2 m) majority circuits that can be output by the randomized construction and
taking the majority vote of these circuits.

Since we have a guarantee that almost all (a 1−o(1) fraction) of the circuits correctly
compute majority, it is enough to compute the majority vote at the end using a circuit
with 2O(log2m) inputs that works for, say, constant bias. Such a circuit, with depth
O(log2m), can be constructed in time 2O(log2 m) by the constant-bias scheme described
earlier.

As we set m = 2O(
√

logn), we get a poly(n)-time uniform construction of an O(log n)-
depth circuit on 2O(

√
logn) inputs that computes majority correctly on all inputs. This

circuit is then used in the scheme described above.

Threshold formulae from thresholds gates. The scheme described above works also
in the more general setting of threshold from thresholds. Indeed, in [CDI+13] we present
the scheme in the general setting. To apply the scheme in the thresholds setting, one needs
to construct a small circuit that computes the required threshold formula, to be used by
ShrinkerGenerator. We accomplish this by extending results of [AR63, HM00, BIW10].

6.6 Preliminaries for the Complexity Theoretic Re-

sults

Let x ∈ {0, 1}n. We denote the Hamming weight of x by wt(x). The normalized Hamming
weight is denote by relwt(x), that is, relwt(x) = wt(x)/n. We further denote the bias of
x by bias(x) = |relwt(x)− 1/2|. Let G = (V,E) be an undirected graph. The degree of a
vertex v is denoted by d(v). For a set S ⊆ V define dS(v) = |{s ∈ S : sv ∈ E}|.

Circuits and Formulae. Let C be a circuit on n inputs that outputs m bits. For
x ∈ {0, 1}n, we denote by C(x) ∈ {0, 1}m the output of C when fed with x as input.
Let C1 be a circuit on n inputs that outputs m bits. Let C2 be a circuit on m inputs
that outputs r bits. We denote by C2 ◦ C1 the circuit on n inputs and r outputs that
is composed of C1 and C2, where the m outputs of C1 are wired to the m inputs of C2.
Clearly, C2 ◦ C1(x) = C2(C1(x)).

The size of a circuit C, denoted by size(C), is the number of gates in the circuit. The
depth, denoted by depth(C), is the largest number of gates from an input to an output

124

6.6 Preliminaries for the Complexity Theoretic Results

in C.
In this paper we focus on logarithmic-depth formulae composed of constant fan-in

threshold gates. Note that such formulae always have polynomial size.

Observation 6.3. A logarithmic-depth circuit composed of constant fan-in gates can be
efficiently transformed to a logarithmic-depth formula composed of constant fan-in gates,
that computes the same function.

Indeed, one can work his way bottom-up and duplicate every gate with fan-out k > 1,
together with its sub-formula, to k copies. As the duplication does not change the depth
of a gate, the resulting formula has logarithmic depth (and so, due to the constant fan-
in, a polynomial size). Thus, in all of our theorems we are satisfied with constructing
logarithmic-depth circuits composed of constant fan-in gates.

For integers 0 ≤ j ≤ k define the threshold function Thkj : {0, 1}k → {0, 1} as follows.

Thkj (x) = 1 if and only if wt(x) ≥ j. Define majority2t+1 = Th2t+1
t+1 . That is, majority2t+1

computes the majority function on 2t+ 1 inputs. When the number of variables is clear
from the context we omit it from the subscript and write majority.

From bipartite graphs to circuits. The following notation will be useful for us. Let
G = (L,R,E) be a bipartite graph with right-degree mt + 1. Define the circuit CG,m,t
as follows. CG,m,t has |L| inputs and |R| outputs. With every vertex r ∈ R associate a
threshold circuit Thmt+1

t+1 in CG,m,t. The inputs to this circuit are the mt+ 1 neighbors of
r in G. The outputs of CG,m,t are the output of the |R| threshold circuits, one for each
vertex in R. When m, t are clear from the context we omit them from the subscript and
write CG.

Samplers. Samplers are key pseudorandom objects we use in our constructions. In
this paper we only use a special kind of samplers, known in the literature as non-adaptive
averaging Boolean samplers. For brevity we call them samplers. For more details we refer
the reader to a survey by Goldreich [Gol11a]. It will be useful for us to define samplers
in terms of bipartite graphs.

Definition 6.4 (Samplers). An (n, d, ε, δ)-sampler is a bipartite graph Sampler = (L,R,E)
with the following properties:

• |L| = |R| = n.

• Sampler has right-degree d.

• For every S ⊆ L, it holds that for at least 1− δ fraction of the vertices r ∈ R,∣∣∣∣dS(r)

d(r)
− |S|

n

∣∣∣∣ ≤ ε.

Theorem 6.4 ([KPS85, Gol11a]). For every n ∈ N and for every ε = ε(n) > 0, δ =
δ(n) > 0, there exists an (n, d, ε, δ)-sampler Sampler, with d = O(ε−2 · δ−1). Moreover,
Sampler can be constructed in time poly(n, ε−1, δ−1).

125

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

6.7 Threshold Formulae from Threshold Gates

In this section we prove Theorem 6.3. Recall that we assume without loss of generality
that j ≥ 2 and k ≥ 2j − 1. We start by proving Lemma 6.2.

6.7.1 Proof of Lemma 6.2

To prove Lemma 6.2 we recall a couple of definitions and prove helpful lemmas.

Definition 6.5 (Qm functions). Let m ∈ N. A function f : {0, 1}n → {0, 1} is a Qm

function if for every x(1), . . . , x(m) ∈ f−1(0) there exists an h ∈ [n] such that x
(1)
h = · · · =

x
(m)
h = 0.

Lemma 6.6. Let j, k ∈ N. Every function that can be computed by a formula composed
only of Thkj gates and no constants is a Qm function, where m =

⌊
k−1
j−1

⌋
.

Proof. We prove the lemma by induction on the depth of the formula. Let F be a depth
0 formula composed of Thkj gates and without constants. Then, F computes the function
F (x) = xh for some index h. Clearly this is a Qm function.

Let F be a formula composed of Thkj gates without constants, where depth(F) > 0.
Let G be the output gate of F . Let G1, . . . , Gk be the gates that have their output wired
to the inputs of G. By induction, for every i ∈ [k], the function computed by the sub
formula of F with output gate Gi is a Qm function.

Let x be an input rejected by F . Since G is a Thkj gate, at most j−1 of the Gi’s accept
one of the m inputs. Thus, for every m inputs rejected by F , at most m(j−1) ≤ k−1 of
the gates Gi’s accept (at least) one of the inputs. Hence, there exists an ` ∈ [k] such that
G` rejects all of those m inputs. The proof follows by applying the induction hypothesis
on the sub-circuit with output gate G`.

Lemma 6.7. There exists an algorithm A that given constants j, k ∈ N, where m =⌊
k−1
j−1

⌋
, and the truth table of a Qm function f : {0, 1}n → {0, 1} as input, runs in exp(n)-

time and generates a formula F on n inputs, with the following properties:

• F consists only of Thkj gates and no constants.

• depth(F) = O(n).

• ∀x ∈ f−1(0) it holds that F (x) = 0.

Proof. The algorithm A is recursive. The base case for the recursion is |f−1(0)| ≤ m. In
this case, since f is a Qm function, there exists an h ∈ [n] such that for every x ∈ f−1(0)
it holds that xh = 0. The algorithm A can find such h in exp(n)-time and return the
formula that on input x outputs xh.

Assume now that |f−1(0)| ≥ m+ 1. Partition the set f−1(0) into k sets

f−1(0) = A0 ∪ · · · ∪ Ak−1

126

6.7 Threshold Formulae from Threshold Gates

of size d|f−1(0)|/ke or b|f−1(0)|/kc each, such that |A0| ≥ |A1| ≥ · · · ≥ |Ak−1|. Let
t ≤ k − 1 be the maximum integer such that At 6= ∅. Note that t ≥ m + 1 because if
there is an empty set among A0, . . . , At then every non-empty set in the partition has
size exactly 1, but their union has size |f−1(0)| ≥ m+ 1.

Let G = (L,R,E) be a bipartite graph with L = {0, 1, . . . , k−1}, R = {0, 1, . . . , t}. A
vertex r ∈ R is connected by edge to the vertices {(j−1)r, (j−1)r+1, . . . , (j−1)r+j−2} ⊆
L, where addition is modulo k. By construction, the degree of every right vertex is j− 1.
Moreover, the degree of every left vertex is at least 1 since (j − 1)t + j − 2 ≥ k − 1.
Indeed,

(j − 1)t+ j − 2 ≥ (j − 1)(m+ 1) + j − 2 ≥ (j − 1)

(⌊
k − 1

j − 1

⌋
+ 1

)
+ j − 2 ≥ k − 1.

For ` = 0, 1, . . . , k − 1 define the function f` : {0, 1}n → {0, 1} to be such that

f−1
` (0) = f−1(0) \

(⋃
r:`r∈E

Ar

)
.

For every ` = 0, 1, . . . , k−1, the algorithm A makes a recursive call on inputs j, k and the
truth table of f`. Denote by F0, . . . , Fk−1 the formulae generated by these recursive calls.
Define F to be the formula where the outputs of F0, . . . , Fk−1 are wired to the inputs of
a Thkj gate, which is the output gate of F . Note that the recursion will eventually get
to the base case as the degree of every left vertex in G is at least 1, and so, for every `,
|f−1
` (0)| is strictly smaller than |f−1(0)|.

Let x ∈ f−1(0). We now show that F (x) = 0. Let r ∈ {0, 1, . . . , t} be the unique
integer such that x ∈ Ar. As the degree of r in G is j−1, there are exactly j−1 functions
among f0, . . . , fk−1 that accept x. Thus, by induction, there are at most j − 1 formulae
among F0, . . . , Fk−1 that accept x. Hence, F (x) = 0.

We now analyze the depth and running time of the algorithm. Fix ` ∈ {0, 1, . . . , k−1}.
If |f−1(0)| ≥ 2k it holds that

|f−1
` (0)| ≤ |f−1(0)| − (j − 1) ·

⌊
|f−1(0)|

k

⌋
≤
(

1− j − 1

k

)
· |f−1(0)|+ j − 1

≤
(

1− 1

2k

)
|f−1(0)|.

That is, f−1
` (0) has size which is a constant fraction, strictly smaller than 1, of the size of

f−1(0), as long as |f−1(0)| ≥ 2k. Together with the fact that |f−1(0)| ≤ 2n, this implies
that the depth of the recursion is O(n) + 2k = O(n). We note that the depth of F is
exactly the recursion’s depth, and so depth(F) = O(n).

127

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

For a function g : {0, 1}n → {0, 1}, let rt(g) be the running time of A when given as
input j, k and the truth table of g. Then,

rt(f) =
k−1∑
i=0

rt(fi) + exp(n),

where the exponential time in n is due to the computation of A0, . . . , Ak−1 from g−1(0).
Solving the recursion yields rt(f) = exp(n).

Proof of Lemma 6.2. We first note that Thmt+1
t+1 is a Qm function. Let F be the formula

generated by the algorithm in Lemma 6.7 on input j, k and the truth table of the function
Thmt+1

t+1 . By Lemma 6.7, every x ∈ {0, 1}mt+1 such that wt(x) ≤ t is rejected by F .
We now show that every x ∈ {0, 1}mt+1 such that wt(x) ≥ t + 1 is accepted by F .

Assume for contradiction that there exists x(1) ∈ {0, 1}mt+1 such that wt(x(1)) ≥ t + 1
but x(1) is rejected by F . Then, there exist x(2), . . . , x(m) ∈ {0, 1}mt+1, each of weight at

most t, such that for every h ∈ [mt+ 1] there exists an i ∈ [m] such that x
(i)
h = 1. On the

other hand, since F is composed of Thkj gates, by Lemma 6.6, the function computed by

F is a Qm function. This contradicts the existence of such x(1). Thus, F (x) = Thmt+1
t+1 (x)

for every x ∈ {0, 1}mt+1.
The depth of F as well as the running time of A follows by Lemma 6.7.

6.7.2 Proof of Theorem 6.3

In this section we prove Theorem 6.3. A key step in proving Theorem 6.3 is the following
lemma.

Lemma 6.8. Suppose that there exists an algorithm A′ that given t, j, k ∈ N as input,
where j, k are constants in t, runs in T ′(t)-time and generates a circuit C ′ on mt + 1
inputs, where m =

⌊
k−1
j−1

⌋
, with the following properties:

• C ′ consists only of Thkj gates and no constants.

• size(C ′) = S ′(t).

• depth(C ′) = D′(t).

• ∀x ∈ {0, 1}mt+1, C ′(x) = Thmt+1
t+1 (x).

Then, there exists an algorithm A that given n, t, j, k as input, where j, k are constants in
n, runs in poly(n, T ′(O(t)))-time and generates a circuit C on n inputs, with the following
properties:

• C consists only of Thkj gates and no constants.

• size(C) = O (n · S ′(O(t))).

• depth(C) = D′(O(t)) +O(log n).

128

6.7 Threshold Formulae from Threshold Gates

• ∀x ∈ {0, 1}n such that relwt(x) ≥ 1
m

+ 1√
t

it holds that C(x) = 1.

• ∀x ∈ {0, 1}n such that relwt(x) ≤ 1
m
− 1√

t
it holds that C(x) = 0.

To prove Lemma 6.8 we need the following key lemma. Informally, Lemma 6.9 shows
how to construct a circuit that shrinks the number of variables to half while maintaining
a promise on the weight.

Lemma 6.9. There exists an algorithm ShrinkerGenerator that given n ∈ N as input
as well as constants ε > 0 and j, k ∈ N such that 0 < ε ≤ 1

2m
, where m =

⌊
k−1
j−1

⌋
,

ShrinkerGenerator runs in poly(n)-time and generates a circuit Shrinker with the following
properties:

• Shrinker has n inputs and n
2

outputs.

• Shrinker consists only of Thkj gates and no constants.

• size(Shrinker) = O(n).

• depth(Shrinker) = O(1).

• ∀x ∈ {0, 1}n such that relwt(x) ≥ 1
m

+ ε it holds that relwt(Shrinker(x)) ≥ 1
m

+ ε.

• ∀x ∈ {0, 1}n such that relwt(x) ≤ 1
m
− ε it holds that relwt(Shrinker(x)) ≤ 1

m
− ε.

Proof. Let Sampler = (L,R,E) be an (n, d, ε
2
, 1

4m
)-sampler. By Theorem 6.4, Sampler can

be constructed in poly(n, ε−1,m) = poly(n)-time with d = O(ε−2m) = O(1). Consider
the circuit CSampler. Let t ∈ N be such that d = mt+ 1.12 Since d = O(1), by Lemma 6.2,
the circuit Cd, used in CSampler, that computes the function Thmt+1

t+1 can be generated in
O(1)-time. Clearly, the size and depth of Cd are constants.

The circuit Shrinker is defined to be the circuit CSampler, where we arbitrarily choose
half of the outputs and discard the rest, together with the respective copies of Cd. By
construction, Shrinker has n inputs and n

2
outputs. It consists of Thkj gates and no

constants. Clearly, size(Shrinker) = n
2
·size(Cd) = O(n) and depth(Shrinker) = depth(Cd) =

O(1).
Let x ∈ {0, 1}n be such that relwt(x) ≥ 1

m
+ ε. Define the set Sx = {i ∈ [n] : xi = 1}.

Note that |Sx| ≥ (1
m

+ε)n. By identifying L with [n], we get by the definition of Sampler,
that for at least 1− 1

4m
fraction of the vertices r ∈ R it holds that

dSx(r)

d(r)
≥ |Sx|

n
− ε

2
≥ 1

m
+
ε

2
.

Thus, the copy of Cd in CSampler that is associated with such r gets an input with weight
at least (

1

m
+
ε

2

)
· (mt+ 1) > t.

12For simplicity of presentation we assume d ≡ 1 (mod m). This assumption can be met easily.

129

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Thus, the output of Cd that is associated with such r is 1, and so relwt(CSampler(x)) ≥
1− 1

4m
. Hence, for any subset of size n

2
of the outputs of CSampler, at least 1− 1

2m
fraction

of them are equal to 1. That is,

relwt(Shrinker(x)) ≥ 1− 1

2m
≥ 1

m
+ ε,

where the last inequality follows since m ≥ 2 and ε ≤ 1
2m

.

Let x ∈ {0, 1}n be such that relwt(x) ≤ 1
m
− ε. In this case |Sx| ≤ (1

m
− ε)n. By the

definition of Sampler, we have that for at least 1 − 1
4m

fraction of the vertices r ∈ R it
holds that

dSx(r)

d(r)
≤ |Sx|

n
+
ε

2
≤ 1

m
− ε

2
.

Thus, the copy of Cd in CSampler that is associated with such r gets an input with weight
at most (

1

m
− ε

2

)
· (mt+ 1) < t+ 1.

Thus, the output of Cd that is associated with such r is 0, and so relwt(CSampler(x)) ≤ 1
4m

.
Hence, for any subset of size n

2
of the outputs of CSampler, at most 1

2m
fraction of them are

equal to 1. That is,

relwt(Shrinker(x)) ≤ 1

2m
≤ 1

m
− ε,

where the last inequality follows since ε ≤ 1
2m

.

Proof of Lemma 6.8. Let Sampler = (L,R,E) be an (n, d, 1
2
√
t
, 1

2m
)-sampler. By Theo-

rem 6.4, Sampler can be constructed in poly(n, t,m) = poly(n, t)-time with d = O((2
√
t)2 ·

(2m)) = O(t). Consider the circuit CSampler. Let t′ be an integer such that d = mt′ + 1.
Note that t′ = O(t). By calling A′ on input t′, j, k, the algorithm A can generate the
circuit C ′ on d inputs, used in CSampler in T ′(t′) = T ′(O(t))-time. Moreover, size(C ′) =
S ′(t′) = S ′(O(t)) and depth(C ′) = D′(t′) = D′(O(t)).

For an integer `, let Shrinker` be the circuit generated by ShrinkerGenerator on input
`, 1

2m
, j, k (see Lemma 6.9). The algorithm A generates Shrinker` for ` = n

2i
, where i =

0, 1, . . . , log2 (n)− 1. The output of A is the circuit

C = Shrinker2 ◦ · · · ◦ Shrinkern
4
◦ Shrinkern

2
◦ Shrinkern ◦ CSampler.

Let x ∈ {0, 1}n be such that relwt(x) ≥ 1
m

+ 1√
t
. Define Sx = {i ∈ [n] : xi = 1}. Note

that |Sx| ≥ (1
m

+ 1√
t
) · n. By identifying L with [n], and by the definition of Sampler, for

at least 1− 1
2m

fraction of the vertices r ∈ R it holds that

dSx(r)

d(r)
≥ |Sx|

n
− 1

2
√
t
≥ 1

m
+

1

2
√
t
.

130

6.7 Threshold Formulae from Threshold Gates

Thus, the copy of C ′ in CSampler that is associated with such r gets an input with weight
at least (

1

m
+

1

2
√
t

)
(mt′ + 1) > t′.

Thus, the output of C ′ that is associated with such r is 1. Hence,

relwt(CSampler(x)) ≥ 1− 1

2m
≥ 1

m
+

1

2m
, (6.1)

where the last inequality follows since m ≥ 2. Define x(1) = Shrinkern (CSampler(x)) ∈
{0, 1}n/2. By the definition of Shrinkern and by Equation (6.1), we have that relwt(x(1)) ≥
1
m

+ 1
2m

. Similarly, x(2) , Shrinkern/2(x(1)) ∈ {0, 1}n/4 has weight at least 1
m

+ 1
2m

.
Continuing this way we get that C(x) ∈ {0, 1} has weight at least 1

m
+ 1

2m
. As C(x) is a

single bit it follows that C(x) = 1.
Let x ∈ {0, 1}n be such that relwt(x) ≤ 1

m
− 1√

t
. In this case |Sx| ≤ (1

m
− 1√

t
) · n. By

the definition of Sampler, for at least 1− 1
2m

fraction of the vertices r ∈ R it holds that

dSx(r)

d(r)
≤ |Sx|

n
+

1

2
√
t
≤ 1

m
− 1

2
√
t
.

Thus, the copy of C ′ in CSampler that is associated with such r gets an input with weight
at most (

1

m
− 1

2
√
t

)
(mt′ + 1) < t′ + 1.

Thus, the output of C ′ that is associated with such r is 0. Hence,

relwt(CSampler(x)) ≤ 1

2m
=

1

m
− 1

2m
. (6.2)

Define x(1) , Shrinkern (CSampler(x)) ∈ {0, 1}n/2. By the definition of Shrinkern and by
Equation (6.2) we have that relwt(x(1)) ≤ 1

m
− 1

2m
. Similarly, x(2) , Shrinkern

2
(x(1)) ∈

{0, 1}n/4 has weight at most 1
m
− 1

2m
. Continuing this way we get that C(x) ∈ {0, 1} has

weight at most 1
m
− 1

2m
. Since C(x) is a single bit, it follows that C(x) = 0.

We now analyze the size and depth of C.

size(C) = size (CSampler) +

logn∑
i=0

size
(

Shrinker n
2i

)
= n · S ′(O(t)) +O

(
logn∑
i=0

n

2i

)
= O (n · S ′(O(t))) ,

and

depth(C) = depth (CSampler) +

logn∑
i=0

depth
(

Shrinker n
2i

)
= D′(O(t)) +O(log n).

131

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Theorem 6.3 readily follows by Lemma 6.2 and Lemma 6.8.

Proof of Theorem 6.3. By calling the algorithm from Lemma 6.2 on input t = log n, j, k,
the algorithm A can generate in exp(t) = poly(n)-time an O(t) = O(log n)-depth formula
on mt + 1 = O(log n) inputs, composed of Thkj gates with no constants, that computes

the function Thmt+1
t+1 . By Lemma 6.8 this implies that in time poly(n, exp(t)) = poly(n),

A can generate a circuit C on n inputs that is composed of Thkj gates, with the following
property. For x ∈ {0, 1}n such that relwt(x) ≥ 1

m
+Ω(1√

logn
), C(x) = 1, and for x ∈ {0, 1}n

such that relwt(x) ≤ 1
m
− Ω(1√

logn
), C(x) = 0. Moreover depth(C) = O(t + log n) =

O(log n).
By Observation 6.3, the circuit C can be transformed in poly(n)-time to a formula

with the same depth, that computes the same function.

6.8 Majority Formulae from Majority Gates

In this section we prove Theorem 6.1 and Theorem 6.2.

6.8.1 Proof of Theorem 6.1

Theorem 6.1 readily follows by Lemma 6.8 together with the following lemma.

Lemma 6.10. There exists an algorithm A that given an integer n as input, runs in
poly(n)-time and computes a circuit C on m , 2

√
logn inputs, with the following proper-

ties:

• C consists only of Maj3 gates and no constants.

• size(C) = poly(n).

• depth(C) = O(log n).

• ∀x ∈ {0, 1}m it holds that C(x) = majority(x).

To prove Lemma 6.10 we need the following definitions and results on bounded in-
dependence distributions. The following well known lemma gives a concentration bound
for a sequence of pairwise independent random variables (see, e.g., [Vad11]).

Lemma 6.11. Let X1, . . . , Xm ∈R [0, 1] be a sequence of pairwise independent random
variables. Let

X =
X1 + · · ·+Xm

m
,

and let µ = E[X]. Then,

Pr [|X − µ| ≥ ε] ≤ 1

mε2
.

132

6.8 Majority Formulae from Majority Gates

Definition 6.12 (k-Wise Independent Hash Functions). Let n,m, k ∈ N. A fam-
ily of functions H = {h : [n]→ [m]} is called k-wise independent if for every distinct
x1, . . . , xk ∈ [n], the random variables h(x1), . . . , h(xk), where h is sampled uniformly
from H, are independent and uniformly distributed in [m].

Theorem 6.5. For every n,m, k ∈ N there exists an explicit construction of a k-wise in-
dependent family of hash functions H = {h : [n]→ [m]}, with size |H| = O(max{n,m}k).

A proof for Theorem 6.5 can be found in, e.g., [Vad11]. To prove Lemma 6.10 we
also need the following fact proved by Goldreich [Gol11b] in his exposition of Valiant’s
proof. The fact roughly states that the output of a Maj3 gate, applied to three uniformly
sampled entries of a (biased) string x, has a higher bias than the bias of x.

Fact 6.13. Let n be an odd integer. Let x ∈ {0, 1}n and let ε = bias(x). Define

ε′ , Pr
i,j,k∼[n]

[Maj3(xi, xj, xk) = majority(x)]− 1

2
.

Then, ε′ = 1.5ε − 2ε3. In particular, if ε ≤ 0.4 then ε′ > 1.15ε. Moreover, for every
ε ∈ [0, 1/2] it holds that ε′ ≥ ε.

The following notation will be useful for us. Let m ∈ N. For a function f : [3m]→ [m],
define the bipartite graph Gf = (L,R,E), with |L| = |R| = m as follows. Associate L
and R with [m], and connect every vertex r ∈ R with the vertices f(3r − 2), f(3r − 1)
and f(3r) in L. Note that the right-degree of Gf is 3. We also define Cf , CGf .

Lemma 6.14. Let m ∈ N, and let H = {h : [3m]→ [m]} be the 6-wise independent
family of hash functions from Theorem 6.5. Then, for every x ∈ {0, 1}m such that
bias(x) ≥ 1

m1/4 :

Pr
h∼H

[
bias (Ch(x)) ≤ min {1.1 · bias(x), 0.4}

]
= O

(
1√
m

)
.

Proof. Fix x ∈ {0, 1}m. Since H is a 6-wise independent family of hash functions, it is in
particular 3-wise independent. As the majority gates in Ch have 3 inputs each, we can
apply Fact 6.13 and conclude that

Eh∼H
[
bias (Ch(x))

]
≥ min {1.15 · bias(x), 0.4} .

By the 6-wise independence of H, the outputs of the majority gates in the circuit Ch,
where h is sampled uniformly from H, are pairwise independent. Thus, by Lemma 6.11
and since bias(x) ≥ 1

m1/4 ,

Pr
h∼H

[
bias (Ch(x)) < min {1.1 · bias(x), 0.4}

]
≤ 1

m · (0.05 · bias(x))2
= O

(
1√
m

)
.

133

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Proof of Lemma 6.10. We first describe the circuit C and then prove its correctness.
As a first step, the circuit C replicates each one of its m inputs m3 times to obtain a

total of m′ = m4 wires. Note that the bias of these wires is at least 1
m

= 1
(m′)1/4 .

Let H = {h : [3m′]→ [m′]} be the 6-wise independent family of hash functions from
Theorem 6.5. Recall that H has size O((m′)6) = poly(m), and can be constructed in
poly(m)-time. Let h1, . . . , h` be functions sampled from H uniformly and independently
at random, where ` is the smallest integer that satisfies the inequality 1.1` ≥ 0.4m.

Let C ′ be the circuit generated by the algorithm from Theorem 6.3 on input m′, j =
2, k = 3. The circuit C ′ computes the majority function correctly on inputs with bias at
least o(1) and thus certainly when the bias is at least 0.4. Moreover, C ′ has poly(m)-size,
O(logm)-depth, and can be constructed in poly(m)-time. For h1, . . . , h` ∈ H, define the
circuit

Ch1,...,h` , C ′ ◦ Ch` ◦ · · · ◦ Ch1 .

Let C ′′ be the circuit generated by the algorithm in Theorem 6.3 on input |H|`, j = 2, k =
3. Since |H|` = mO(logm) = poly(n), the circuit C ′′ has poly(n)-size, O(log n)-depth, and
can be constructed in poly(n)-time. C ′′ computes the majority function correctly on
inputs with bias at least 0.1 (and, in fact, even for bias at least o(1)).

After the replication step, the m′ replicated wires are wired as inputs to the circuit
Ch1,...,h` for every `-tuple h1, . . . , h` ∈ H. Wire the output of each such circuit to an input
of C ′′. The output of C is defined to be the output of C ′′. By the above, C can be
constructed in poly(n)-time. This implies that size(C) = poly(n). Since

depth(Ch1,...,h`) = depth(C ′) +
∑̀
i=1

depth(Chi) = O(logm) + ` ·O(1) = O(logm)

for every h1, . . . , h` ∈ H, and since depth(C ′′) = O(log n), we have that depth(C) =
O(log n).

We now show that C computes the majority function. Let x ∈ {0, 1}m and let
x′ ∈ {0, 1}m′ be the resulted replicated string. By Lemma 6.14, and by applying a union
bound,

Pr
h1,...,h`∼H

[bias (Ch` ◦ · · · ◦ Ch1(x′)) < 0.4] <
`√
m′

= O

(
logm

m2

)
< 0.1.

Thus, by the definition of C ′,

Pr
h1,...,h`∼H

[Ch1,...,h`(x
′) = majority(x)] ≥ 0.9.

That is, at least a 0.9 fraction of the circuits Ch1,...,h` output majority(x). This implies
that C ′′, and thus C, outputs majority(x).

Proof of Theorem 6.1. By Lemma 6.10, a circuit of poly(n)-size and O(log n)-depth, that
computes the majority function on 2

√
logn inputs can be generated in poly(n)-time. By

134

6.8 Majority Formulae from Majority Gates

applying Lemma 6.8 we obtain, in poly(n)-time, an O(log n)-depth circuit that com-
putes the majority under the assumed promise on the bias. The proof then follows by
Observation 6.3.

6.8.2 Proof of Theorem 6.2

In this section we prove Theorem 6.2. We first recall a few definitions and results.

Definition 6.15. Let n, s ∈ N. A distribution R over {0, 1}n is s-pseudorandom if for
every circuit C on n inputs with size at most s, it holds that

|Pr[C(R) = 1]− Pr[C(Un) = 1]| < 0.1.

Definition 6.16. Let S : N → N be a time-constructible function 13. A function PRG :
{0, 1}∗ → {0, 1}∗ is an S-pseudorandom generator 14 if

• ∀r ∈ {0, 1}∗, |PRG(r)| = S(|r|).

• There exists an algorithm that, given r ∈ {0, 1}∗, runs in time 2O(|r|) and outputs
PRG(r).

• ∀s ∈ N, the distribution PRG(Us) is (S(s))5-pseudorandom.

In a long line of research initiated by Nisan and Wigderson [NW94] (with some of
the ideas, in the context of cryptography, dating back to Yao, Blum and Micali [Yao82c,
BM84]), it has been shown that pseudorandom generators can be constructed under
hardness assumptions. We state a more recent theorem by Umans [Uma03].

Theorem 6.6 ([Uma03]). Let S : N → N. Given the truth table of a function f :
{0, 1}s → {0, 1} that cannot be computed by a circuit with size at most S(s), there exists
an S(s)Ω(1)-pseudorandom generator.

We also make use of the following theorem.

Theorem 6.7 ([Val84], see also [Gol11b]). There exists a constant c1 such that the follow-

ing holds. For every n ∈ N there exists a family of formulae Fn =
{
F

(n)
w : w ∈ {0, 1}nc1

}
,

each on n inputs, such that for every w ∈ {0, 1}nc1 ,

• F (n)
w consists only of Maj3 gates and no constants.

• size(F
(n)
w) = O(nc1).

• depth(F
(n)
w) = O(log n),

13A function S : N→ N is time constructible if ∀s ∈ N it holds that S(s) ≥ s, and there exists a Turing
machine that on input 1s outputs 1S(s) in O(S(s))-time.

14Note that this definition refers to pseudorandom generators in the context of computational com-
plexity rather than cryptography.

135

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

and
Pr

w∼{0,1}nc1

[
∀x ∈ {0, 1}n F (n)

w (x) = majority(x)
]
> 1− 2−n.

Moreover, given n ∈ N, w ∈ {0, 1}nc1 , the formula F
(n)
w can be constructed in O(n2c1)-

time.

Proof of Theorem 6.2. By Theorem 6.6, the assumption of Theorem 6.2 implies the ex-
istence of a 2s/c2-pseudorandom generator PRG, for some constant c2 > 1. Set s =
c1c2 log2 n, where c1 is the constant from Theorem 6.7. Note that the PRG outputs nc1

bits.
We first describe the circuit C and then turn to prove its correctness. Let C ′ be the

circuit generated by the algorithm from Theorem 6.3 on input nc1c2 , j = 2, k = 3. The
circuit C ′ computes the majority correctly on inputs with bias at least 0.1 (and, in fact,
o(1)). Moreover, C ′ has O(log n)-depth, and can be generated in poly(n)-time.

Define the circuit C on n inputs as follows. The n inputs of C are wired to the
inputs of the formula F

(n)
w for every w ∈ {PRG(r) : r ∈ {0, 1}s}. The output of each such

formula is wired to an input of C ′. The output of C is defined to be the output of C ′.
For every r ∈ {0, 1}s, the string w = PRG(r) can be computed in exp(s) = poly(n)-

time. By Theorem 6.7, given n ∈ N and w ∈ {0, 1}nc1 , the formula F
(n)
w can be generated

in poly(n)-time. Since there are 2s = nc1c2 such formulae, and since C ′ can be generated
in poly(n)-time, the circuit C can be generated in poly(n)-time. By Theorem 6.3 and

Theorem 6.7, depth(C ′) = O(log n) and for every w ∈ {0, 1}nc1 , depth(F
(n)
w) = O(log n).

Hence, depth(C) = O(log n), as stated.
We now prove that C computes the majority function. Assume, for contradiction,

that there exists x0 ∈ {0, 1}n such that C(x0) 6= majority(x0). Then, by the construction
of C,

Pr
r∼{0,1}s

[
F

(n)
PRG(r)(x0) = majority(x0)

]
≤ 0.6. (6.3)

By Theorem 6.7, given n ∈ N, w ∈ {0, 1}nc1 , the formula F
(n)
w can be constructed in

O(n2c1)-time. Therefore, there exists a circuit Cuniversal of size O(n4c1) that has nc1 + n
inputs, such that for every w ∈ {0, 1}nc1 , x ∈ {0, 1}n it holds that Cuniversal(w, x) =

F
(n)
w (x).15 Consider the circuit C0 on nc1 inputs defined by hard wiring x0 as x to
Cuniversal. Clearly, C0(w) = Cuniversal(w, x0) for every w ∈ {0, 1}nc1 . By Equation (6.3),

Pr
r∼{0,1}s

[C0(PRG(r)) = majority(x0)] ≤ 0.6.

On the other hand, by Theorem 6.7,

Pr
w∼{0,1}nc1

[C0(w) = majority(x0)] ≥ 1− o(1).

This yields a contradiction as C0, which has size O(n4c1) < (nc1 + n)5, distinguishes with
probability 0.4− o(1) > 0.1 a random string from a random output of PRG.

15The quadratic overhead is due to the simulation of an algorithm by a family of circuits; see, e.g.,
Theorem 6.6 in [AB09].

136

6.9 From Threshold Formulae to Broadcast

Weakening the Assumption in Theorem 6.2. One can show that the assumption
in Theorem 6.2 (i.e., the existence of an ε > 0 such that E , DTIME(2O(n)) does not have
2εn-size circuits) can be relaxed to the following assumption: there exists a pseudorandom
generator with seed length O(log n) for read once branching programs of length n and
width O(n).16 The latter assumption is implied by the assumption that appears in
Theorem 6.2.

The state of the art pseudorandom generator for read once branching programs has
seed length O(log2 n) [Nis92, INW94]. We stress that this construction is unconditional
(i.e., no computational assumptions are necessary). We also note that it is possible to
use this pseudorandom generator to give an alternative proof for Lemma 6.10, and any
advancement in the construction of pseudorandom generators for read once branching
programs is a step forward in resolving Conjecture 6.1. We omit the details in this
version of the paper.

6.9 From Threshold Formulae to Broadcast

In this section, we show a simple way to construct broadcast protocols for n parties from
protocols for a constant number of parties based on threshold and also more general
formulae. Following the notation of [HM00], we differentiate here between a processor
which is the entity doing the actual computation and communication and the player which
is the entity that receives input and produces output. A party is the player together with
the associated processor.

We will assume throughout that processors can communicate via synchronous secure
point-to-point channels. The results and protocols in this section could also be phrased
in the more general MPC framework we present later, but we have chosen not to do this,
to make the section more self-contained and easier to read. We begin with some basic
definitions:

Definition 6.17. In a Byzantine Agreement (BA) protocol, each player Pi has input
xi and output yi. All honest players must terminate and output the same value, and if
xi = x for all honest Pi then it must be the case that yi = x for all honest Pi.

In a Broadcast protocol some designated player P starts from input x. All honest
players must terminate and output the same value y, and if P is honest, it must be the
case that x = y.

A 2-cast protocol is a broadcast protocol for three players.

It is well known and easy to see that BA implies Broadcast: the broadcaster sends his
message to all processors and then we do BA. Conversely, if less than n

2
processors are

corrupt, then Broadcast implies BA: each processor broadcasts his input and then each
processor takes majority decision to get the output. Note that in case the inputs are not
bits but come from a larger set, it may happen that that no value is in majority (if the

16We do not give here a formal definition for read once branching programs. For more information the
reader is referred to [AB09], Chapter 21, Section 6.

137

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

honest processors do not agree on the input to start with). In this case, we adopt in the
following the convention that processors output ⊥.

In the following we want to consider more general adversaries than those that are
limited simply by the number of processors they can corrupt. For this we need some
definitions:

Definition 6.18. An adversary structure is a family Γ of subsets of the processors such
that A ∈ Γ, B ⊆ A implies B ∈ Γ. An adversary structure is Q2 (resp., Q3) if it
is the case that no two (resp., no three) subsets in Γ cover the entire processor set. A
Q2-adversary is an adversary that may only corrupt sets of processor belonging to a Q2

adversary structure. A Q3-adversary is defined in the same way.

As an example, an adversary who can corrupt less than n
2

of the processors is a special
case of a Q2-adversary.

Assume now we are given a monotone formula F on n inputs. If we let each input
variable correspond to a processor, an input string corresponds to a subset of the pro-
cessors in a natural way, by considering it as the characteristic vector of the subset. The
family of subsets that are rejected by F under this correspondence forms an adversary
structure because F is monotone. It is not hard to see by induction on the height of F
that if it is composed of Th3

2 gates, the corresponding adversary structure is Q2, in fact
the same arguments shows that any formula composed of Thkj gates where j − 1 < k/2
has a corresponding Q2 adversary structure (a stronger statement follows by Lemma 6.6).
Moreover, for Th4

2 gates we have a stronger condition, namely they lead to Q3 adversary
structures. Conversely, it follows from [HM00] that for every Q2 (Q3) adversary struc-
ture Γ, there exists a formula composed of Th3

2 (Th4
2) gates that rejects exactly Γ. The

formulas obtained this way are not necessarily logarithmic depth, in fact they are very
large even for threshold functions.

6.9.1 Virtual processors and ormulas

Consider a formula F composed of Thkj gates with n inputs. We assume the formula is
laid out as a k-ary tree with the output gate on top. As described in the introduction,
we assign a virtual processor to the output wire of each gate, and a real processor to each
input wire of F . A virtual processor is emulated by the k processors that “sit below him”
in the formula.

A virtual processor is defined to be honest if at most j − 1 of his k emulators are
corrupt. An honest virtual processor holds a value if all honest processors emulating him
agree on that value.

Now assume for a moment that we are given BA for free as a primitive for any group
of k processors emulating a virtual processor, where the BA is guaranteed to work if that
virtual processor is honest. This immediately implies the following recursively defined
protocol for sending a message x from a (virtual or real) processor S to another (virtual
or real) processor R:

Message Transfer Protocol (MTP)

138

6.9 From Threshold Formulae to Broadcast

1. If S,R are real, send x from S to R.

2. If S is real and R is virtual, S sends x to each processor emulating R using MTP.
The emulators do BA to agree on what was received.

3. If S is virtual and R is real, processors emulating S send x to R using MTP, and
R takes majority decision to decide what was received.

4. Otherwise (both processors are virtual) each processor emulating S sends x to each
processor emulating R using MTP. Each emulator takes majority decision on what
he receives, and finally the emulators do BA to agree on what was received.

We will only use this protocol in cases where j−1 < k/2. This means that for an honest
virtual processor, a majority of his emulators are honest. This and a straightforward
inductive argument implies:

Lemma 6.19. Consider a formula F composed of Thkj gates as above, where j−1 < k/2.
Assume that we are given BA as a primitive for all groups of k processors emulating a
virtual processor, where the BA is guaranteed to work if that virtual processor is honest.
If S and R are both honest and run the Message Transfer Protocol, R will end up holding
x. Even if S is not honest, an honest R always ends up holding some message.

Under the same assumption as in the above lemma, we can build the following simple
protocol for broadcasting a bit, based on formula F composed of Thkj gates:

Broadcast Protocol based on F .

1. The broadcaster sends his bit to the virtual processor sitting on top of the formula
using MTP.

2. The virtual processor sitting on top of the formula now holds a bit. He sends it to
each real processor using MTP.

Theorem 6.8. Consider a formula F composed of Thkj gates as above, where j−1 < k/2.
Assume that we are given BA as a primitive for all groups of k processors emulating a
virtual processor, where the BA is guaranteed to work if that virtual processor is honest.
If the set of corrupt real processors is rejected by F , then the Broadcast Protocol based on
F is correct.

Proof. Since F is built from Thkj gates where j − 1 < k/2, the family of subsets it rejects
must be Q2 as noted above. Hence the set of honest real processors is accepted by F .
This means that the virtual processor sitting on top of F is honest. The theorem now
follows immediately from Lemma 6.19.

139

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

6.9.2 Broadcast for less than n/3 corrupted parties.

As a warm-up we show how to get known results for broadcast in a simple way from the
formula based approach.

Corollary 6.9. The formula based approach implies a broadcast protocol for n parties
secure if less than n(1

3
− 1√

logn
) parties are corrupted, and more generally a broadcast

protocol secure against any Q3-adversary.

Proof. As noted above, there exists a formula composed of Th4
2 gates that rejects exactly

the given adversary structure. This formula satisfies the assumptions in Theorem 6.8,
so all we have to do is to argue that we do BA for 4 processors where at most 1 is
corrupt. But this is easy, we can get broadcast and hence BA as follows: the broadcaster
P sends his message to all processors using the Message Transfer Protocol, and then each
receiver sends to all receivers what he got from P . Finally, the receivers take majority
decision to get the output. This construction implies that the BA protocol and the
MTP are recursively defined in terms of each other, but this is not a problem, as each
recursive call is always to the next lower level, so the recursion eventually “bottoms out”.
This implies the Q3-result, and using the formulas constructed in Theorem 6.3, we get a
polynomial time broadcast protocol for the case where at most t processors are corrupted
and t < n(1

3
− 1√

logn
).

This result also follows from the results in [HM00], albeit in a more complicated
way. Also, Fitzi and Maurer [FM98] show a broadcast protocol for Q3-adversaries that is
polynomial time in n given access to an oracle that decides membership in the adversary
structure.

6.9.3 From 2-cast to broadcast

It was shown by Fitzi and Maurer [FM00] that given 2-cast as a primitive for any group
of 3 processors, one can get perfectly secure broadcast for n processors assuming less than
n
2

are corrupted.
Here, we give an alternative and simple proof of this result, and moreover the same

proof trivially extends to show that broadcast is possible in a more general case of a
Q2-adversary. This generalization was previously open.

It is of course easy to do Byzantine agreement (BA) among 3 processors where at
least two are honest, if 2-cast is given. So an obvious approach is to do something similar
as in the previous corollary: take a formula composed of Th3

2 gates rejecting exactly the
given Q2 structure and apply Theorem 6.8. However, to satisfy the assumptions in that
result, we need BA, or equivalently 2-cast, among any group of 3 processors, even virtual
processors. But we are only given 2-cast among real processors.

We therefore need to construct a 2-cast protocol π2c that works for virtual processors,
i.e., it is a protocol for 9 processors split in 3 committees of 3 processors each, such that
each committee emulates a virtual processor and at least 2 of the 3 virtual processors are
honest. There will be a sending virtual processor S and two receivers R0, R1. π2c may

140

6.9 From Threshold Formulae to Broadcast

use 2-cast among any 3-subset of the 9 emulating processors, and must ensure that 1) if
S is honest and holds a message (a bit b), then the honest receiver(s) receive b; and 2) if
S is not honest, then R0 and R1 (who must then be honest) hold the same bit after the
protocol17. As a first step, we construct a 2-cast protocol π′2c, where the sender is not the
entire committee S, but one of the processors in S, here denoted by PS.

Protocol π′2c

1. PS 2-casts his bit b to every pair of processors, where one processor is in R0 and
one is in R1.

2. Each processor in R0 or R1 considers all received bits. If the same bit b was received
in all 2-casts, store as temporary result b. Else store ⊥.

3. Each committee Ri (i = 0, 1) does BA using the temporary results as inputs. The
result will be a bit bi or ⊥. The result is reported to the other committee using the
message transfer protocol described above.

4. Each processor in Ri computes an output as follows: if your own committee reported
bi, output bi. If your own committee reported ⊥ and R1−i reported b1−i, output
b1−i. Otherwise (both committees reported ⊥) output 0.

Lemma 6.20. Protocol π′2c implements correctly 2-cast from PS to R0 and R1.

Proof. If the sender PS is honest and sends b, then if the committee Ri is honest, then
the (at least 2) honest processors in Ri will only see b, therefore Ri will report b and
honest processors from Ri will output b as they should no matter what happens in R1−i.

If PS is corrupt, we can assume that both R0 and R1 are honest and we must show
that they output the same bit. Clearly, if at least one of R0 and R1 report ⊥ or they
both report the same bit b, then R0 and R1 output the same bit. We now show that the
only remaining case where they report different bits cannot occur: assume without loss
of generality that R0 reports 0. In order for this to happen, at least one of the honest
processors in R0 must have 0 as temporary result. But this means (by the 2-casts we
used in the first step) that all honest processors in R1 see at least one 0. Therefore none
of them can have 1 as temporary result, and R1 therefore cannot report 1.

To get the protocol π2c, we simply run π′2c 3 times with each processor in S playing
the role of PS, and processors in R0, R1 take majority decision on the bit to output. The
properties we wanted for π2c now follow immediately from the above lemma.

This and Theorem 6.8 now immediately implies

Corollary 6.10. Given 2-cast among any group of 3 parties, there exists a broadcast
protocol for n parties secure against any Q2-adversary.

17 Note that we cannot rely on the result by Fitzi and Maurer to get such a protocol, since we do not
have honest majority: it may be the case that only 4 of the 9 processors are honest.

141

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Note that our results on construction of formulas for the majority function (Theorems
6.2, 6.1) together with the construction behind the corollary immediately gives polyno-
mial time (in n) broadcast protocols for at most t corrupted processors. We can use
a randomized construction or a construction conditioned on a complexity assumption
to get the optimal result t < n

2
, matching the result from [FM00]. Or we can use the

(unconditional) explicit construction that gives us t < n(1
2
− 2−O(

√
logn)).

6.10 The Multiparty Computation Framework

In Section 6.10.1 we give a general overview of the player emulation technique and in
Section 6.10.2 we give a formal definition of the MPC framework that we will use (based
on the [HM00] MPC framework).

6.10.1 The player emulation technique

The formulas constructed in Section 6.7 and Section 6.8 will be used to construct efficient
multiparty protocols via the “player emulation” technique from [HM00]. Variants of this
technique, also referred to as player virtualization or simulation, were used for different
purposes in several other works (e.g. [Bra87, Cha89, HIKN08, DIK+08, IPS08, LRM10,
LOP11]). While implementing player emulation in the passive security model is quite
straightforward, in the active security model it requires more care. In the following we
give more details on the implementation of this technique.

Recall that in a single player emulation step, the role of a party τ participating in
a protocol Π is replaced by a secure protocol π which involves a small set of parties
v1, . . . , vk, along with the parties of Π. We will typically let k = 3 (resp., k = 4) in
the case of security against a passive (resp., active) adversary, and let π be a protocol
which remains secure as long as at most one of the emulating parties vi is corrupted.
Furthermore, the total computational complexity of all parties in π (which is typically
cast in some algebraic computation model) is only bigger by a constant factor than
that of the emulated party τ in Π. As explained in the Introduction, a logarithmic-
depth threshold formula defines a sequence of such player emulation steps which result
in transforming an atomic protocol π for a constant number of parties into an efficient
n-party protocol which tolerates an optimal or near-optimal fraction of corrupted parties.

The application of the player emulation technique in [HM00] is formulated in a
specialized framework for secure MPC and is restricted to the protocol compiler of
BGW [BGW88].18 However, the technique is quite insensitive to many of these details
and can be applied with other protocols and notions of security from the literature.

A conceptually simple way for implementing a player emulation step is by viewing
the role of τ in Π as a reactive ideal functionality, which interacts with the parties in Π
(receiving incoming messages as inputs and delivering outgoing messages as outputs), and

18In Section 6.10.2 we use a slightly stronger variant of the model from [HM00] which supports player
emulation without any further requirements.

142

6.10 The Multiparty Computation Framework

maintains a state information during this interaction. The protocol π emulating τ then
needs to realize the corresponding functionality using the emulating parties vi instead of
τ . Note that protocol π does not only involve the players emulating τ . It also specifies
how players communicating with τ should translate their messages into whatever format
π uses.19

The protocol π can satisfy any composable notion of security that applies to reactive
functionalities, namely one which ensures that π can be securely used as a substitute for
τ in an arbitrary execution environment if at most a single vi is corrupted. The protocols
π we use in this work all satisfy the standard notion of UC-security from [Can01], which
suffices for this purpose.20

Alternatively, it is possible to implement a player emulation step by only relying on
protocols for secure function evaluation which satisfy the standard definitions of stan-
dalone security [Can00, Gol04]. The idea is to first ensure that only a single message is
sent in each round of Π, and then implement a round in which τ interacts with party
P by a protocol involving P and the emulating parties vi. The functionality realized by
such a protocol is determined by the choice of a concrete (robust) secret sharing scheme
which is used to distribute the state of τ between the emulating parties.

6.10.2 The [HM00] MPC framework

We consider n players that wish to perform some computational task together. We
focus only on perfect security and, as usual in this context, we assume secure point-to-
point communication channels between every two processors. We introduce an abstract
framework in which the specific operations that can be performed by the individual
processors remains undefined. This allows us to obtain generic results that are applied in
subsequent sections to concrete multiparty computation models that are instantiations
of our abstract framework. Our definitions are based on [HM00], except that we make
an additional “locality” requirement which is implicitly used in [HM00].

As in [HM00], we distinguish between a player and the corresponding processor. A
player is the entity that receives input and produces output and the processor is in
charge of executing operations and communicating. A party is a player together with the
associated processor.

We assume a global variable space X . A variable x ∈ X can take value from some
fixed finite set of values V . We associate with each variable a set of processors that know
the value of the variable. We assume that variables are only used in a write-once manner

19Alternatively, if the communication channels are modeled as an ideal functionality, one can extend
the definition of this functionality so it will do the translation, and then in a final step implement the
translation. This leads in some cases to a slightly simpler protocol in the end.

20In particular, all these protocols are perfectly secure with a straight-line black-box simulator, which
was shown in [KLR10] to imply UC-security in the case of secure function evaluation. We note that while
standard UC-security is cast in an asynchronous network model and does not guarantee output delivery, it
can be extended to capture synchronous protocols which guarantee output delivery (cf. [CDN12, Chapter
4]).

143

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

and therefore, transmitting a message between two processors simply entails of adding a
variable that is in the sending processor’s view to the receiving processor’s view.

A multiparty computation model (or MPC model) defines the set of values V that may
be assigned to variables and the different operators (and respective operands) that the
processors may use. The MPC model may also specify that some of these variables have
predetermined values and are treated as constants. Additionally the MPC model specifies
the power of the adversary (i.e., whether it is passive or active, see Section 6.10.2). All
the following definitions are with respect to some fixed MPC modelM which will always
be clear from the context.

A protocol π among a set P of processors, that involves variables from a variable space
X , is a sequence of statements. Each statement may be of the following forms:

1. An input statement input(pi, x) instructs the processor pi ∈ P to read a value from
its input tape and to assign the value to its local variable x ∈ X .

2. A transmit statement transmit(p1, p2, x) instructs the processor p1 ∈ P to send
the value of the variable x ∈ X (that is in its view) to the processor p2 ∈ P . This
simply means that x is added to the view of p2.

3. An output statement output(p, x) instructs the processor p ∈ P to output the value
of the variable x ∈ X to its associated processor. We define by output(p) the
list of all values that p has output throughout the execution of the protocol and by
outputi(p) the output of p before the execution of the i-th statement of the protocol.

4. A computation statement comp(p, op,X, x) instructs the processor p to perform the
atomic operation op on the variables X ⊆ X (that are in its view) and to assign
the result to the variable x ∈ X . This may include assigning a random value. The
specification of the operation as well as its operands are a part of the MPC model
M.

A multiparty computation specification (or simply called specification) formally spec-
ifies the task to be accomplished by the processors. Intuitively, a specification specifies
the cooperation in an ideal environment which includes, in addition to the n processors,
a trusted processor. Formally, a specification is a pair (π, τ) consisting of a protocol π
among a set P0 of processors, and the name of a virtual processor τ ∈ P0. The protocol π
of the specification is also called the ideal protocol. We assume that τ is never involved
in input and output statements.

As an example, consider a specification described by a protocol in which all the parties
first read their input, send their inputs to the trusted processor τ who computes some
function of their input and transmits a result of this computation to each processor.
Each processor outputs its own result. We note that this type of specification is known
as secure function evaluation.

A multiparty protocol generator G for the set PG of processors is a polynomial-time
algorithm that takes as input a multiparty computation specification (π0, τ) involving
processors from a set P0 and returns a protocol π for the processors (P0\{τ}) ∪ PG. A

144

6.10 The Multiparty Computation Framework

statement index function for a specification (π0, τ) and protocol π is a strictly monotone
function f ,

f : {1, . . . , |π0|+ 1} → {1, . . . , |π|+ 1}

where f(1) = 1 and f(|π0|+1) = |π|+1. We say that a protocol generator is local if each
statement α in π0 is mapped to a sequence of statements in π such that the mapping does
not depend on variables that do not appear in the statement α. All protocol generators
considered in this work are local.

Intuitively, a protocol generator G simulates the virtual trusted processor τ by a
multiparty computation protocol among the processors in PG. Each statement of the
ideal protocol π0 is expanded into a sequence of statements, and all these sequences are
concatenated to the resulting protocol π. The statement index function f specifies how
statements in π0 are expanded into subprotocol in π. Thus, each index i maps a statement
in π0 to the index f(i) of the first statement in the corresponding subprotocol in π.

We consider different levels of explicitness of the protocol generator. If the protocol
generator can be implemented by a polynomial-time Turing Machine, we say that it is
explicit. If it can be implemented by a probabilistic polynomial-time Turing Machine
that only fails with probability that is exponentially vanishing in the number of players
then we say that it is a randomized construction. We will be mainly interested in protocol
generators that only have blackbox access to an algebraic structure V . This can be modeled
by assuming that each element in V is given some adversarially chosen identifier.

For an integer k ∈ N, a k-processor protocol generator is a protocol generator that
supports specification involving at most k processors other than the trusted processor τ .

Security notions for multiparty protocols

Let π be a protocol for the set P of processors. Our framework supports adversaries that
may be either active or passive (whether the adversary is passive or active is defined as
part of the MPC model).

A passive adversary A for the protocol π that corrupts the processors ZA is a (prob-
abilistic) strategy. After each statement of the protocol π, the passive adversary A may
read the variables in the views of the corrupted processors ZA and can extend its own
current view based on these values. It may also do arbitrary computation over its own
view. The adversary is computationally unbounded.

An active adversary A for the protocol π is a passive adversary that may, in addition,
take complete control over the corrupted processors ZA.

Let A be an adversary and (π0, τ) be a specification for the set of processors P0.
We say that the protocol π A-securely computes the specification (π0, τ) if there exists a
statement index function f : {1, . . . , |π0|+ 1} → {1, . . . , |π|+ 1} and an adversary A0 for
the ideal protocol π0 with ZA0 = ZA∩(P0\{τ}) that satisfy the following property. For all
inputs and for every i = 1, . . . , π0 + 1, the joint distribution of A0’s view with the output
of outputi(p) for all non-corrupted processors p ∈ (P0\{τ}\ZA0) before the i-th statement
of the ideal protocol π0 (with the adversary A0 present) is equal to the joint distribution
of A’s view and the views vf(i)(p) of all non-corrupted processors p ∈ (P0\{τ}\ZA0) before

145

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

the f(i)-th statement of the real protocol π (with the adversary A present). Moreover,
the complexity of A0 must be polynomial in the complexity of A.

The adversary A0 can be thought of as a kind of simulator for A.
A structure Z ⊆ 2P is a monotone set of subsets of the processors P where by

monotone we mean that it is closed to taking subsets. For a structure Z and a specification
(π0, τ), we say that a protocol π Z-securely computes (π0, τ) if for every adversary A such
that ZA ∈ Z, it holds that π A-securely computes (π0, τ).

A protocol generator G for the set of processors P is A-secure if, for every specification,
the protocol that results by applying G to this specification A-securely computes the
specification. For a structure Z ⊆ 2P , a protocol generator G for the set P of processors
is Z-secure if, for every adversary A such that ZA ∩ P ∈ Z, the protocol generator is
A-secure. (See [HM00] for further details.)

Remapping and simulating processors

Let P and P ′ be sets of processors. A processor mapping σ : P → P ′ is a surjective
function from P onto P ′. If π is a protocol and σ : P → P ′ is a processor mapping
then the mapped protocol σ(π) is the same protocol, where each statement involving a
processor in p ∈ P is replaced by the processor σ(p).

For a specification (π0, τ) with τ /∈ P , the mapped specification σ(π0, τ) is defined as
(σ(π0), τ).

The inverse processor mapping σ−1 of a processor mapping is defined by

σ−1 : P ′ → 2P

where σ−1(p′) = {p ∈ P : σ(p) = p′}. For a set of processors P , we define σ(P) =
∪p∈P{σ(p)} and σ−1(P) = ∪p∈Pσ−1(p).

For a structure Z for the set P of processors and a processor mapping σ : P → P ′,
the mapped structure is σ(Z) = {Z ⊆ P ′ : σ−1(Z) ∈ Z}.
Lemma 6.21 (Processor Remapping Lemma, [HM00]). Given a protocol π for the set
P of processors that Z-securely computes the specification (π, τ), and some processor
mapping σ, then σ(π) is a protocol for the set σ(P) of processors that σ(Z)-securely
computes the specification σ(π0, τ).

Consider a multiparty protocol π among the set P of processors and a protocol gener-
ator G for the set PG of processors. To simulate a virtual processor p ∈ P in π applying
the protocol generator G means to consider this processor p as a trusted processor and to
have this processor simulated by a subprotocol among the processors in PG, according to
G. More precisely, the specification (π, p) is used as input for the protocol generator G.
We note that only processors that do not have input and output statements are simulated.

The following theorem of [HM00] show that a processor in an MPC protocol can be
simulated by other processors.21

21The actual theorem in [HM00] restricts the simulating protocol generators to [BGW88] protocol
generators. However, as stated in [HM00, Footnote 16], the only property of the [BGW88] protocol
generators that they use is that they are local (see Section 6.10).

146

6.11 From Threshold Formulae to Secure Multiparty Computation

Theorem 6.11 (Processor Simulation Theorem, adapted from [HM00]). Let π be a proto-
col in the MPC-model M among the set P of processors that Z-securely computes a spec-
ification (π0, τ), and let G1, . . . , Gk be Z1, . . . ,Zk-secure local protocol generators for the
processor sets P1, . . . , Pk, respectively. Assume that in π the k processors pr1 , . . . , prk ∈ P
(which have no input or output statements) are simultaneously simulated by subprotocols
applying the protocol generators G1, . . . , Gk respectively. Then the resulting multiparty
protocol π∗ (also in the MPC-model M) is for the set P ∗ of processors and Z∗-securely
computes the specification (π0, τ), where

P ∗ = (P\R) ∪
k⋃
i=1

Pi,

Z∗ =

{
Z ⊆ P ∗ :

((
Z ∩ (P\R)

)
∪
{
pri ∈ R : Z ∩ Pi /∈ Zi

})
∈ Z

}
,

and R = {pr1 , . . . , prk} is the set of replaced processors.

6.11 From Threshold Formulae to Secure Multiparty

Computation

In this section we show how to use logarithmic depth threshold formulae to obtain an
efficient generic reduction from multiparty MPC protocols to MPC protocols for a constant
number of parties. Before proceeding to the statement and proof of Lemma 6.22 which
captures our approach, we recall some standard notations that will be used in this section.

Notation. For a set I ⊆ [n], we denote by 1I the n-bit indicator vector (b1, . . . , bn) ∈
{0, 1}n where bi = 1 if i ∈ I and bi = 0 otherwise. Let F be a depth d formula. We say
that the output wire of F has depth 0. For any other wire, we say that it has depth i if it
is an input to a gate whose output wire has depth i−1. For a wire w, that is not an input
wire, we define by children(w) the input wires of the gate of which w is an output wire.
For a subset of input wires S, we define F (S) we be the value obtained by evaluating F
when the input wires of S have value 1 and the other input wires have value 0.

Lemma 6.22. Let j < k < n be integers and suppose that F is a formula on n inputs,
which uses only Thkj gates and uses no constants. If there exists an explicit and local
k-processor protocol generator for the MPC model M that is secure against the structure
{Z ⊆ {p1, . . . , pk} : |Z| < j} then there exists an explicit ZF -secure n-processor protocol
generator also in the MPC model M for a set P = {p1, . . . , pn} of n processors where,

ZF =
{
{pi1 , pi2 , . . . , pik} : k ≤ n and F (1{i1,...,ik}) = 0

}
.

Given a specification (π, τ), the protocol generator outputs a protocol π′ that ZF -
securely computes (π, τ) such that the |π′| = cdepth(F) · |π| for a suitable constant c.

147

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Proof. Let Gk be the k-processor protocol generator (that is secure against adversaries
that control less than j processors). Given a specification (π, τ) for the processor set
{p1, . . . , pn, τ}, our protocol generator computes a sequence of protocols π0, . . . , πd, πd+1

and finally outputs the protocol πd+1. Each protocol πi involves a set of processors
Pi (which includes p1, . . . , pn but may include additional processors) and Zi-securely
computes (π, τ), for a specific adversary structure Zi. Note that the protocol generator
only outputs the final protocol πd+1, which only involves the processors P , {p1, . . . , pn}.
The main part of the proof will be to show that πd+1 is indeed secure with respect to the
adversary structure ZF . In other words, that Zd+1 = ZF .

The protocols π1, . . . , πd are constructed recursively, whereas π0 is described directly
and πd+1 is a simple transformation of πd. For i ∈ {0, . . . , d}, the protocol πi involves
the processors p1, . . . , pn (which we call real processors) as well as additional processors
(which we call virtual processors). Each protocol πi is constructed by simulating the
virtual processors in πi−1 by other virtual processors. Only in the very last step (i.e., the
d+ 1-th protocol), all the remaining virtual processors are simulated by real processors.

We associate each wire of F with a (virtual) processor. For a wire w, we abuse
notation and use w to denote both the wire and the associated processor. It will be clear
from the context whether we think of w as a wire or as the associated processor.

We denote by Wi the set of wires that are either of depth (exactly) i or are input
wires and are of depth no larger than i. Note that W0 contains only the output wire of
F whereas Wd includes all of the wires of F .

We proceed to describe the protocols π0, . . . , πd. For every i ∈ {0, . . . , d}, the protocol
πi will involve the (virtual) processors associated with wires in Wi as well as the (real)
processors P . That is, Pi = P ∪Wi.

We first describe the protocol π0. As noted above, π0 involves the processors P0 =
{p1, . . . , pn, w0} where w0 is the processor associated with the output wire (i.e., the single
wire of depth 0). The protocol π0 is simply the protocol π where τ (the trusted processor)
is replaced with w0. Formally, let σ be the processor mapping that maps w0 to τ . Then
π0 = σ(π). Let Z0 = {Z ⊆ P0 : Z ⊆ P}. Since w0 acts as a trusted processor in Z0, the
protocol π0 trivially Z0-privately computes the specification (π, τ).

For i ∈ {1, . . . , d}, we define πi recursively, based on πi−1. Let Ri−1 ⊆ Wi−1 be the
subset of wires of depth i−1 that are not input wires. The protocol πi is constructed using
Theorem 6.11 where the processors Ri−1 are (simultaneously) replaced by their children.
Specifically, every processor w ∈ Ri−1 is replaced by its own children children(w) ⊆
Wi using the k-processor local protocol generator Gk. By Theorem 6.11, the resulting
protocol πi, Zi-privately computes the specification (π, τ) for

Zi ,

{
Z ⊆ Pi :

(
Z ∩ (Pi−1\Ri−1)

)
∪
{
w ∈ Ri−1 :

∣∣∣∣Z ∩ children(w)

∣∣∣∣ ≥ j
}
∈ Zi−1

}
.

The final protocol πd+1 is obtained by renaming every virtual processor w (corre-
sponding to an input wire w) by a real processor. More specifically, if w is connected to
the i-th input variable, then w is simulated by pi. Formally, let φ be a processor mapping

148

6.11 From Threshold Formulae to Secure Multiparty Computation

that maps every input wire w that is connected to the i-th input variable to pi. We define
πd+1 = φ(πd).

To prove that Zd+1 = ZF , we introduce the notion of a suffix of a formula. We denote
by Fi the i-deep suffix of F . That is, Fi is the formula that contains all the wires in
∪j≤iWj. Note that the gates at depth i are not included. Also, note that the wires Wi

are included in Fi but are not the output of any gate (in Fi). The wires Wi are used as
the input wires of Fi. It is easy to see that F0 is a trivial formula taking 1 input to 1
output. We also point out that Fd is not (necessarily) equal to F since different input
wires of Fd may be wired to the same input variable of F .

Claim 6.22.1. For every i ∈ {0, . . . , d} it holds that Z ∈ Zi if and only if Fi(Z\P) = 0
where Fi is the i-deep suffix of F .

Proof. We prove the claim by induction. For i = 0, by the definition of Z0, it holds
that Z ∈ Z0 if and only if Z ⊆ P . Note that the formula F0 is just the trivial formula
composed of a single wire that is both the input and output wire. Hence, Z ∈ Z0 if and
only if F0(Z\P) = 0.

Let i ∈ {1, . . . , d} and suppose that the claim holds for i− 1. Let Z ∈ Pi and let

Z ′ ,
(
Z ∩ (Pi−1\Ri−1)

)
∪
{
w ∈ Ri−1 :

∣∣∣∣Z ∩ children(w)

∣∣∣∣ ≥ j
}
. (6.4)

By the definition of Zi, it holds that Z ∈ Zi if and only if Z ′ ∈ Zi−1. By the inductive
hypothesis, Z ′ ∈ Zi−1 if and only if Fi−1(Z ′\P) = 0. Thus, it suffices to show that
Fi(Z\P) = Fi−1(Z ′\P).

Consider the evaluation of the formula Fi on input Z\P . That is, the evaluation of Fi
when the only input wires of Fi that have value 1 are those in Z\P . Consider the values
of the wires Wi−1 during the evaluation of the formula. We show that the wires of Wi−1

that have value 1 are exactly those in Z ′. Fix a wire w ∈ Wi−1. We separate into two
cases:

1. Suppose that w /∈ Ri−1 (i.e., w is an input wire).
(⇒) If w has a value of 1 then w ∈ Z (since only input wires in Z have a value of
1). Thus, by definition of Z ′ and since w /∈ Ri−1, it holds that w ∈ Z ′.
(⇐) On the other hand, if w ∈ Z ′, then since w /∈ Ri−1, it holds that w ∈ Z and
therefore has value 1.

2. Suppose that w ∈ Ri−1.
(⇒) If w has value 1 then, since w is the output of a Thkj gate, at least j of its
children have value 1 and in particular at least j of w’s children are in Z. Thus, by
definition of Z ′, it holds that w ∈ Z ′.
(⇐) On the other hand if w ∈ Z ′ then, by the definition of Z ′, at least j of w’s
children are in Z. The children of w are input wires and therefore have value 1.
Since w’s value is computed as the threshold of at least j of its children, w has
value 1.

149

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Thus, Fi(Z\P) = Fi−1(Z ′\P) and the claim follows.

By Claim 6.22.1, Z ∈ Zd if and only if Fd(Z\P) = 0. By Lemma 6.21,

Zd+1 = φ(Zd) =
{
Z ⊆ P : φ−1(Z) ∈ Zd

}
.

Claim 6.22.2. For Z ⊆ P it holds that Z ∈ Zd+1 if and only if F (Z) = 0.

Proof. (⇒) Suppose that Z ∈ Zd+1, then Z ⊆ P and φ−1(Z) ∈ Zd. In particular
Fd(φ

−1(Z)\P) = 0. Now consider the evaluation of F on input 1Z . An input wire w that
is connected to the i-th input variable has value 1 if and only if pi ∈ Z. Thus, the input
wires correspond exactly to φ−1(Z)\P . Since the formula proceeds by evaluating Fd on
the input wires we have F (1Z) = 0.

(⇐) If F (Z) = 0, then in particular Fd(φ
−1(Z)) = 0. Hence, φ−1(Z) ∈ Zd and so

Z ∈ Zd+1.

We conclude that the protocol πd+1 ZF -securely computes the specification (π, τ).
Observe that |π0| = |π| and that the Processor Simulation Theorem (Theorem 6.11)
replaces every statement in πi−1 by a constant number of statements in πi. Therefore,
|πd| = cdepth(F)|π| for some suitable constant c. The protocol πd+1 has the same length
as πd since it is constructed by replacing every statement in πd with a single statement.
Therefore, the protocol generator outputs a protocol of length cdepth(F)|π|.

6.12 Secure MPC over Blackbox Rings

In this section we consider multiparty computation over any commutative ring (R,+, ∗).
The processors are only given blackbox access to the ring. This model of secure computa-
tion was first considered by Cramer et al.[CFIK03] and it generalizes the classical model
of [BGW88], where the computation is over a finite field. We note that the classical
results of [BGW88] for passive and active security do not extend to this model as they
require field operations22. We present a protocol generator based on the threshold for-
mula to MPC approach introduced in Section 6.11. We stress that our protocols use the
ring in an entirely blackbox manner, are fairly simple and do not rely on any nontrivial
facts from algebra (as in [CFIK03]).

Formally, we define an MPC model which we call the Ring-MPC model as follows.
Every variable x ∈ X may take values in the ring R. We allow processors to compute
addition and multiplication over the ring. That is, protocols in the Ring-MPC model
support the operator + (resp., ∗), which takes two operands and returns their sum (resp.,
product). Additionally, the processors can sample a random ring element and have access
to the constant −1 (i.e., the additive inverse of the multiplicative neutral element of the
ring R).

22Specifically, the ability to find multiplicative inverses is used by Shamir’s secret sharing scheme
[Sha79].

150

6.12 Secure MPC over Blackbox Rings

6.12.1 The passive model

Our approach to constructing secure multiparty protocol generators is to use Lemma 6.22
to reduce the problem to that of constructing protocols for a constant number of proces-
sors. For the latter, we use Maurer’s [Mau06] simple and elegant protocol generator. We
note that Maurer’s protocol works over any ring and uses the ring in a blackbox manner.
A downside of Maurer’s protocol generator is that it produces protocols of length expo-
nential in the threshold of tolerated adversaries. However, this does not concern us since
we only need to use the base protocol for a constant number of processors.

In fact, instead of using Maurer’s protocol generator we could also use the classical
[BGW88] protocol. We choose to use Maurer’s protocol generators because (1) they
are significantly simpler than [BGW88] and combined with our approach yield a fairly
simple and straightforward construction of multiparty protocol generators and (2) they
can be implemented over any ring and not just a field. We stress that we improve upon
Maurer’s protocol generators in that we produce protocols of length polynomial, rather
than exponential, in the desired threshold of corrupted processors.

The main caveat of our approach is that it is either (1) based on an unproven conjec-
ture (the majority from majorities conjecture - Conjecture 6.1) or (2) uses a randomized
construction or (3) supports a non-optimal threshold of corrupt processors.

As noted above, we only require the following special cases of Maurer’s protocol
generator:

Theorem 6.12 ([Mau06]). There exists an explicit three processor local protocol generator
in the Ring-MPC model that is secure against a single passive adversary.

Using Lemma 6.22 combined with Theorem 6.12 and our majority formulae constructions
(see Section 6.8) we obtain Theorems 6.13, 6.14 and 6.15.

Theorem 6.13. If the majority from majorities conjecture (Conjecture 6.1) holds then
there exists an explicit protocol generator in the Ring-MPC model that is secure against a
passive adversary that controls any t < n

2
of the n processors.

Given a protocol for n processors that involves t ring operations, the protocol generator
outputs a protocol involving t · poly(n) ring operations.23

Proof. The majority from majorities conjecture implies that there exists an algorithm
that on input n outputs a logarithmic depth formula Fn composed of Maj3 gates (i.e.,
Th3

2 gates) that computes majority. The running time of the algorithm is polynomial
in n.

Given a specification (π, τ) that involves n processors, the protocol generator con-
structs Fn and then applies Lemma 6.22 while using Maurer’s 3-processor local protocol
generator of Theorem 6.12.

23Note that the number of communicated ring elements is always upper bounded by the amount of
computation.

151

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Note that by Theorem 6.2, the conjecture used in Theorem 6.13 can be replaced by
the assumption that E does not have 2εn- size circuits for some ε > 0, or even more
specifically on the existence of sub-exponentially hard one-way functions.

As an additional result, using our construction of formulae that compute majority
given sufficient bias (Theorem 6.1), we obtain the following result which guarantees close
to optimal security.

Theorem 6.14. There exists an explicit protocol generator in the passive Ring-MPC
model that is secure against any adversary that controls a 1

2
− 2−O(

√
logn) fraction of the

n processors.
Given a protocol for n processors that involves t ring operations, the protocol generator

outputs a protocol involving t · poly(n) ring operations.

Proof. By Theorem 6.1, there exists an algorithm that on input n outputs a logarithmic
depth formula Fn composed of Maj3 such that given any string of relative Hamming
weight less than 1

2
− 2−O(

√
logn) as input, the formula Fn outputs 0. The running time of

A is polynomial in n.
Given a specification (π, τ) that involves n processors, the protocol generator con-

structs Fn by running A and then applies Lemma 6.22 while using Maurer’s 3-processor
local protocol generator of Theorem 6.12.

Alternatively, the logarithmic depth majority formulae can be obtained using the
randomized construction of [Val84] (see also [Gol11b]). This results in the following
randomized construction.

Theorem 6.15. There exists a randomized construction of a protocol generator in the
passive Ring-MPC model that is secure against an adversary that controls t < n

2
of the n

processors.
Given a protocol for n processors that involves t ring operations, the protocol generator

outputs a protocol involving t · poly(n) ring operations.

Proof. By Theorem 6.7, there exists a randomized algorithmA that on input n, other than
with exponentially small probability, outputs a logarithmic depth formula Fn composed
of Maj3 gates that computes majority. The running time of A is polynomial in n. As the
advice string for our protocol generator we use the random coins of A.

Given a specification (π, τ) that involves n processors, the protocol generator generates
Fn by running A on the random coins specified by its advice string and then applies
Lemma 6.22 while using Maurer’s local 3-processor protocol generator of Theorem 6.12.

6.12.2 The active model

In this section we show a protocol generator in the Ring-MPC model that is secure against
an active adversary. To do so we shall once again use Lemma 6.22, only this time we
reduce the n-processor problem to a four processor problem.

152

6.12 Secure MPC over Blackbox Rings

In order to solve the four processor case we once again use Maurer’s [Mau06] actively
secure protocol. Indeed, Maurer gives a simple and elegant protocol that is secure against
any adversary that actively controls at most one processor.

Unfortunately, Maurer’s four processor active protocol requires operations not sup-
ported by the blackbox ring model. Specifically, the protocol requires the ability to test
for equality and to choose a majority between three values (where a tie is not possible).

To support Maurer’s protocol we could potentially add these operations to our model.
However, in order to use Lemma 6.22, we would have to be able to simulate such opera-
tions done by a virtual processor using other processors (which does not seem easy).

Instead, we take a different approach. We slightly extend our model by allowing
global variables. That is, variables that exist in the view of all processors (both real and
virtual). Every processor may give a global variable a value (for simplicity we assume
that the value of each global variable is only set once) and read the values of global
variables.

In addition, we allow the parties to do arbitrary computation over global variables.
This computation may use oracle access to the underlying ring but only based on the
(adversarially chosen) identifiers of ring elements. In particular the number of oracle
queries may not depend on the underlying ring. We call this the Active Ring-MPC model.

Note that the Processor Simulation Theorem (Theorem 6.11) and Lemma 6.22 can
be extended to this model. This can be done since an operation over global variables by
a virtual processor can be simulated by having each simulating processor do the exact
same computation. Note that since the variables are global, each simulating processor
has access to these variables.

It is worthwhile to point out that a protocol in the Active Ring-MPC model can be
easily transformed to work in a more standard model in which (1) we allow broadcasts and
(2) allow additional operations such as testing equality and taking majority. However, it
will be useful for us to present our protocols in the Active Ring-MPC and they can later
be adapted to other models.

We give a sketch of the steps required to adapt Maurer’s four processor protocol to
the Active Ring-MPC model:

1. Handling Equality: equality is used in Maurer’s protocol only in the consistency
check of the underlying verifiable secret sharing (VSS) protocol.

In the four processor VSS protocol, a dealer sharing a secret s ∈ R sends shares
s1, s2, s3, s4 to processors p1, p2, p3, p4 such that processor i receives all shares but
si. Then, for every i ∈ {1, 2, 3, 4}, every processor except the i-th processor check
that their received value si is the same. This is done by three pairwise equality
tests.

Suppose that processors j and k holding the respective shares s
(j)
i and s

(k)
i (which

are supposed to be equal to si) want to verify that their share are equal. In Maurer’s
protocol this is done by simply sending each other the shares and broadcasting a
complaint if they differ.

153

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Instead of testing equality, both the j-th and k-th processor publish the difference
s

(j)
i −s

(k)
i between their two shares as a global variable. We argue that this does not

extend the view of the adversary. Indeed, if the adversary controls either processor
i, j or k then its view is not extended since it already knows both s

(j)
i and s

(k)
i . If

the adversary controls the fourth processor then its view is also not extended since
it will always see the constant 0 (recall that since we deal with a four processor
protocol there is only one processor controlled by the adversary).

Suppose that one of these global variables vi,j,k corresponding to a share si was set
to a non-zero value. Then, as in Maurer’s protocol, the dealer publishes si as a
global value which is used by all parties as the correct value of si. Note that the
latter operation can be implemented solely using global variables and computation
over these global variables.

2. Handling Majority: A majority between three value a, b, c ∈ R (where there
is no possibility of a tie) is used in Maurer’s VSS reconstruction phase. In this
protocol each processor computes the majority of three values that were broadcast
by three processors. We replace these broadcasts by publishing global variables and
therefore the majority operation is an operation done over global variables which
we allow in our model.

Using this transformation, we can state Maurer’s active protocol in terms of a four-
processor protocol generator:

Theorem 6.16 ([Mau06]). There exists an explicit four processor local protocol generator
in the Active Ring-MPC model that is secure against an active adversary that controls a
single processor.

Using Theorem 6.16 combined with Lemma 6.22 and our construction of a logarithmic
depth threshold formula from Th4

2 gates (Theorem 6.3), we obtain the following result in
the active model.

Theorem 6.17. There exists an explicit protocol generator in the Active Ring-MPC model
that is secure against an active adversary that controls at most a 1

3
− Ω(1√

logn
) fraction

of the n processors.

Given a protocol for n processors that involves t ring operations, the protocol generator
outputs a protocol involving t · poly(n) ring operations.

Proof. By Theorem 6.3, there exists an algorithm that on input n outputs a logarithmic
depth formula Fn composed of Th4

2 gates that outputs 0 for any input of relative Hamming
weight 1

3
− Ω(1√

logn
) or less.

Given a specification (π, τ) that involves n processors, the protocol generator generates
Fn and then applies Lemma 6.22 while using Maurer’s 4-processor local protocol generator
of Theorem 6.16.

154

6.13 Secure MPC over Groups

6.12.3 MPC over k-linear maps

In this section we describe an extension of Maurer’s protocol generator which supports
blackbox computation over an arbitrary basis of k-linear maps. For simplicity, we restrict
the attention here to k-linear maps over Abelian groups (rather than vector spaces or
modules, over which they are usually defined). The computational model is defined by a
set of finite Abelian groups G1, . . . , Gm written in additive notation and a basis B of k-
linear maps over these groups, where a k-linear map is a function L : Gi1×· · ·×Gik :→ Gi0

with the following property. If all of the input variables but the j-th are held constant,
then the resulting function L′ : Gij → Gi0 satisfies L′(g + g′) = L′(g) + L′(g′) for each
g, g′ ∈ Gij . Note that k′-linear maps for k′ < k (including addition in a single group
Gi) are special cases of k-linear maps. A blackbox computation over B can have inputs
and variables taken from any of the groups Gi and may combine them using an arbitrary
sequence of k-linear maps from B as well as individual group operations.

Our main observation is that by using a simple generalization of Maurer’s protocol,
n = k + 1 processors (resp., n = k + 2 processors) suffice for evaluating an arithmetic
circuit over B with security against a single passively (resp., actively) corrupted processor.
We sketch the approach for the passive case.

As in [Mau06], we represent each group element g ∈ G by k + 1 additive shares
g1, . . . , gk+1 such that processor i holds all shares except gi. Now, suppose we are given k

group elements g(1), . . . , g(k) represented in this way, so that g(i) =
∑k+1

j=1 g
(i)
j . To locally

compute additive shares of L(g(1), . . . , g(k)), we write

L(g(1), . . . , g(k)) =
∑

a∈[k+1]k

L
(
g

(a1)
1 , . . . , g

(ak)
k

)
.

Noting that the value of each of the (k + 1)k terms is known to at least one of the k + 1
processors (namely, any processor whose index does not occur in the tuple a corresponding
to the term), we can assign each term to a processor who can evaluate it. Letting each
processor sum the values of the term assigned to it, we get an additive representation
of L(g(1), . . . , g(k)). To continue the computation, each share of the output needs to be
re-shared as in the protocol of [Mau06].

This approach, combined with Theorem 6.3, yields the following theorem.

Theorem 6.18. For any constant k ≥ 2, there exists an explicit protocol generator in the
model of MPC over k-linear maps that is secure against a passive (resp., active) adversary
controlling at most a 1

k
− Ω(1√

logn
) (resp., 1

k+1
− Ω(1√

logn
)) fraction of the n processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

6.13 Secure MPC over Groups

In this section we consider a different instantiation of the abstract MPC framework in-
troduced in Section 6.10, where the computation is done over a finite group while only

155

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

making a black-box access to the group. In particular, the number of group elements
communicated during the protocol does not depend on the computational complexity
of the group operation. This model was introduced by Desmedt et al. [DPSW07] and
further studied in [SYT08, DPS+12b, DPS12a].

Let (G, ∗) be a fixed finite group written in multiplicative notation. We do not
assume that the group is Abelian (and think of it as being non-Abelian). We instantiate
the framework with variables taking values in G. We allow the processors to compute
the following operations:

• The group operator ∗. That is, given g1, g2 ∈ G a processor can compute the value
g1 ∗ g2. Note that since the group is (usually) non-Abelian, the order of operands
is important.

• The operator invert which given an operand g ∈ G returns the inverse g−1 of g.

• The operator rand that takes no operands and returns a uniformly distributed
group element.

We call this model the Group-MPC model. For brevity, we will sometimes write g1g2

instead of g1 ∗ g2.

6.13.1 The passive model

In this section, we directly present a simple 3-processor protocol generator (in the Group-MPC
model) that has passive security against a single adversary. The protocol that we present
is loosely based on a protocol of Feige, Killian and Naor [FKN94] and simplifies a previous
protocol from [DPS+12b].

Let x ∈ G. Recall that a 2-out-of-2 secret sharing of x is the following (random)
process: select x1 ∈R G and set x2 = x−1

1 x such that x = x1x2). We call (x1, x2) a
sharing of x. Note that since the group may be non-Abelian, x1 and x2 play different
roles and are called the left and right shares respectively.

Our protocol consists of three processors p1, p2, p3. The protocol generator will main-
tain the invariant that every variable held in the ideal protocol (i.e., the specification) by
τ is secret shared by p1 and p2 such that p1 holds the left share and p2 holds the right
share. In fact, by “computing a sharing z” we mean that p1 computes z1 and p2 computes
z2 such that z = z1z2 and z1 is uniformly distributed in G.

Before presenting the 3-processor protocol generator, we present two useful sub-
protocols that will be used by the protocol generator. The first protocol is useful for
multiplying two sharings. It is described and proved in Claim 6.22.3. The second proto-
col transforms a sharing (a, b) into a random sharing of ba. It is described and proved in
Claim 6.22.4.

Claim 6.22.3 (Share Multiplication Protocol). Let {p1, p2, p3} be a set of three processors
in the Group-MPC model such that p1 gets as input a1, a2 ∈ G, p2 gets as input b1, b2 ∈ G
and p3 has no input. Let z = a1b1a2b2. Then there exists a protocol for computing a

156

6.13 Secure MPC over Groups

sharing of z such that the view of each processor is statistically independent of the input
of the other processors.

Proof. Consider the following protocol:

1. p1 selects at random r0, r1, r2, r3 ∈R G and sends r0, r1, r2, r3 to p2.

2. p1 computes a′1 = r−1
0 a1r1 and a′2 = r−1

2 a2r3 and sends a′1 and a′2 to p3.

3. p2 computes b′1 = r−1
1 b1r2 and b′2 = r−1

3 b2 and sends b′1 and b′2 to p3.

4. p3 selects r′ ∈R G and sends u1 = a′1b
′
1a
′
2b
′
2r
′ to p1 and u2 = r′−1 to p2.

5. The share of p1 is z1 = r0u1 and the share of p2 is z2 = u2.

Note that (z1, z2) is indeed a sharing of z since z2 is uniformly distributed in G and

z1z2 = r0u1u2 = r0a
′
1b
′
1a
′
2b
′
2 = (r0r

−1
0)a1(r1r

−1
1)b1(r2r

−1
2)a2(r3r

−1
3)b2 = a1b1a2b2 = z.

The view of p1 consists only of a1, a2, r0, r1, r2, r3, z1. Since z1 = r0a1b1a2b2r
′, and since

r′ is not known to p1, the view is statistically independent from b1, b2.

The view of p2 consists only of b1, b2, r0, r1, r2, r3, z2 which is statistically independent
from a1, a2 (since z2 = r′−1).

The view of p3 consists only of r−1
0 a1r1, r

−1
1 b1r2, r

−1
2 a2r3, r

−1
3 b2 which is statistically

independent of a1, b1, a2, b2.

Claim 6.22.4 (Share Inversion Protocol). Let {p1, p2, p3} be a set of three processors in
the Group-MPC model such that p1 gets as input a ∈ G, p2 gets as input b ∈ G and p3 has
no input. Then there exists a protocol for computing a sharing of the inverted product ba
such that the view of each processor is statistically independent of the input of the other
processors.

Proof. Consider the following protocol:

1. p1 samples uniformly at random r1 ∈R G, computes y1 = ar1 and sends r1 to p2

and y1 to p3.

2. p2 samples uniformly at random r2 ∈R G, computes y2 = r2b and sends r2 to p1

and y2 to p3.

3. p3 samples uniformly at random s ∈R G, computes w1 = y2s and w2 = s−1y1. It
sends w1 to p1 and w2 to p2.

4. The share of p1 is z1 = r−1
2 w1 and the share of p2 is z2 = w2r

−1
1 .

157

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Note that:
z1z2 = r−1

2 w1w2r
−1
1 = r−1

2 y2ss
−1y1r

−1
1 = r−1

2 r2bar1r
−1
1 = ba

as required.
The view of p1 consists of a, r1, r2, w1. Since w1 = r2bs and s is unknown to p1, its

view is statistically independent of b.
Similarly, the view of p2 consists of b, r1, r2, w2. Since w2 = sar1 and s is unknown to

p2, its view is statistically independent of a.
Finally, the view of p3 consists of ar1, r2b. Since r1 and r2 are unknown to p3, its view

is statistically independent of a, b.

Using Claims 6.22.3 and 6.22.4 we are ready to describe our protocol generator and
prove its security against a single adversary.

Lemma 6.23. There exists a 3-processor local protocol generator in the Group-MPC model
that has passive security against a single adversary.

Proof. Let (π, τ) be a specification for the set of processors {p1, p2, p3}. Given (π, τ) as
input, the protocol generator outputs a protocol π′ by replacing each statement of π that
involves τ by a sub-protocol. Statements that do not involve τ are mapped to π′ as-is.
An invariant that we maintain that in π′, is that if τ has access to some variable x in π
then p1 and p2 have access to a sharing of x in π′.

1. Every statement of the form transmit(pi, τ, z) for i ∈ {1, 2, 3} is mapped to the
following sub-protocol. The processor pi selects at random z1 ∈R G and sets z2 =
z−1

1 z (such that z = z1z2). It sends z1 to p1 and z2 to p2. Note that this process
maintains our invariant that p1 and p2 hold a sharing of z.

2. Every statement of the form transmit(τ, pi, z) for i ∈ {1, 2, 3} is mapped to the
following sub-protocol. Since z is in the view of τ , by our invariant, p1 and p2 have
a sharing (z1, z2) of z. Processor p1 sends z1 to pi and processor p2 sends z2 also to
pi. Processor pi then computes z = z1z2.

3. Every statement of the form comp(τ, ∗, z1, z2, z) is mapped to the following sub-
protocol. Since z1 is known to τ , by our invariant, p1 and p2 have a sharing (a1, b1)
of z1 and a sharing (a2, b2) of z2. To compute a sharing of z = z1 ∗ z2 = a1b1a2b2,
p1 and p2 simply run the share multiplication protocol (Claim 6.22.3).

4. Every statement of the form comp(τ, inverse, z, z′) is mapped to the following sub-
protocol. Since z is known to τ , by our invariant, p1 and p2 have a sharing (z1, z2)
of z. They both invert their shares and run the inversion protocol (Claim 6.22.4)
on the inverted shares. At the end of the protocol p1 has u1 and p2 has u2 such
that u1u2 = z−1

2 z−1
1 = (z1z2)−1 = z−1.

5. Every statement of the form comp(τ, random, z) is mapped to the following sub-
protocol. Processor p1 samples a random element r1 and p2 samples a random
element r2. They set z = (r1, r2). That is (r1, r2) is a sharing of z.

158

6.13 Secure MPC over Groups

We proceed to show that π′ securely computes the specification (π, τ) with respect to
an adversary that sees the view of a single processor.

Fix an adversary A′ that sees the view of a single processor p∗ ∈ {p1, p2, p3} in π′ and
fix inputs to the three processors. We consider the statement index function that maps
each statement in π to the corresponding sub-protocol (described above) in π′. We will
show an adversary A such that the joint distribution of its view together with the output
of the uncorrupted processors in π is identical to the view of A′ together with the output
non-corrupted processors in π′.

We proceed to describe what the adversary A does for the i-th statement of π and
argue why its view together with the output of the uncorrupted processors in π remains
identically distributed to that of A′ together with the uncorrupted processors in π′. For
every i ∈ {1, . . . , |π| + 1}, the adversary A performs the following steps for the i-th
statement of π:

1. If the statement (1) does not involve τ or (2) it is of the form transmit(pi, τ, z) or (3)
is of form transmit(τ, pi, z) for pi 6= p∗ then A runs the corresponding sub-protocol
in π′ and performs the same steps that A′ would perform. Since the views of neither
A′ is not extended and that output of all non-corrupt processors is either unchanged
or changed similarly (in case of an output statement), the joint distribution of the
view of A and the output of the uncorrupted processors in π′ remains identical to
that of A′ and the uncorrupted processors in π.

2. If the statement is of the form comp(τ, ∗, z1, z2, z) and p∗ ∈ {p1, p2} then (by
Claim 6.22.3, the view of A′ is extended by a random share of z. Thus, A ex-
tends its view by simply selecting a uniformly distributed group element. If p∗ = p3

then it simply performs the same steps that A′ would perform.

3. If the statement is of the form comp(τ, inverse, z1, z) and p∗ ∈ {p1, p2} then the
view of A′ is extended by an independent random sharing of z−1 (by Claim6.22.4).
Thus, A extends its own view by a uniformly distributed group element. If p∗ = p3

then it simply performs the same steps that A′ would perform.

4. If the statement is of the form comp(τ, rand, z) then A simulates the corresponding
sub-protocol in π′. The view of A′ is (possibly extended) by a single share of the
random element z. The adversary A simulates this by choosing a random group
element in G.

5. If the statement is of the form transmit(τ, p∗, z) then A simulates the corresponding
sub-protocol that recovers z from shares held by p1 and p2. It then performs the
same steps as A′ performs with respect to the above simulation. The view of both
A and A′ are extended by z.

Thus, after every statement, the joint distribution of the view of A together with the
output of all uncorrupted processors in π is identically distributed to that of A′ together
with the output of the uncorrupted processors in π′.

159

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

Using Lemma 6.23 together with Lemma 6.22 we obtain the following two results:

Theorem 6.19. There exists a protocol generator in the passive Group-MPC model that
is secure against an adversary that controls a 1

2
− 2−O(

√
logn) fraction of the n processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

Proof. By Theorem 6.1, there exists an algorithm that on input n outputs an O(log n)
depth formula Fn composed of Maj3 gates such that for every input of normalized weight
less than 1

2
−2−O(

√
logn), the formula Fn outputs 0. The theorem follows by an application

of Lemma 6.22 based on the 3-processor local protocol generator of Lemma 6.23.

Theorem 6.20. If the majority from majorities conjecture (Conjecture 6.1) holds then
there exists a protocol generator in the Group-MPC model that has passive security against
an adversary that controls at most t < n

2
processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

Proof. The majority from majorities conjecture implies the existence of an algorithm
that on input n outputs a logarithmic depth formula that uses only Maj3 gates and
computes majority. The theorem follows from an application of Lemma 6.22 based on
the 3-processor local protocol generator of Lemma 6.23.

Theorem 6.21. There exists a randomized construction of a protocol generator in the
passive Group-MPC model that is secure against an adversary that controls t < n

2
proces-

sors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · poly(n) group operations.

Proof. By Theorem 6.7, there exists a randomized polynomial-time algorithm that on in-
put n, other than with exponentially vanishing probability, outputs an O(log n) depth for-
mula composed of Maj3 gates that computes majority. The theorem follows by an applica-
tion of Lemma 6.22 based on the 3-processor local protocol generator of Lemma 6.23.

Theorem 6.22. There exists a protocol generator in the passive Group-MPC model that
is secure against an adversary that controls t < n

2
processors.

Given a protocol for n processors that involves t group operations, the protocol gener-
ator outputs a protocol involving t · nO(logn) group operations.

Proof. By Lemma 6.10, there exists a (deterministic) polynomial-time algorithm that on
input n, runs in time nO(logn), and outputs an O(log2 n) depth formula (of size nO(logn))
composed of Maj3 gates that computes majority. The theorem follows by an application
of Lemma 6.22 based on the 3-processor local protocol generator of Lemma 6.23.

160

6.13 Secure MPC over Groups

6.13.2 The active model

In a recent work, Desmedt et al. [DPS12a], gave a protocol (or in our terminology, a
protocol generator) in the Group-MPC model which is actively secure against any Q3

adversary. However, the complexity of their protocol generator is quadratic in the number
of maximal sets in the adversary structure, which in the case of thresholds, is exponential
in the number of processors. In this section we address an open problem stated by
[DPS12a] by showing a protocol generator in the Group-MPC that has active security
against threshold adversaries where the complexity of the protocol is polynomial in the
number of processors. Our protocol is actively secure against any adversary that controls
at most a 1

3
−Ω(1√

logn
) fraction of the n processors (in contrast to the optimal threshold

of 1
3
− Ω(1

n
)).

We basically use the same processor simulation approach formalized in Section 6.11
and used in previous sections. Recall that in order to use this approach we must rely
on a protocol-generator for a constant number of processors. For this we simply use an
instantiation of the protocol of Desmedt et al. [DPS12a] for four processors that is secure
against an adversary that actively control one processor.

Unfortunately, as in the case of Maurer’s four processor active protocol in the Ring-MPC
model (see Section 6.12.2), the [DPS+12b] protocol uses operations that are not supported
by our model. Specifically equality testing and computing majority.

As in Section 6.12.2, we extend the Group-MPC model by allowing global variables and
allowing arbitrary computation over global variables. This computation may use oracle
access to the underlying group but only based on the (adversarially chosen) identifiers
of group elements. In particular, the number of oracle queries may not depend on the
underlying ring. We call this the Active Group-MPC model.

Note that a protocol in the Active Group-MPC model can be easily transformed to
work in a more standard model in which (1) we allow broadcasts and (2) allow additional
operations such as testing equality and taking majority vote.

Below, we give a sketch of the steps required to adapt the four processor [DPS+12b]
protocol to the Active Group-MPC model:

1. Equality type 1: The first type of equality test that is used in the [DPS+12b]
protocol in the consistency check of the underlying VSS and consistency checks in
the NodeMult protocol. The problem and its solution are almost identical to that
encountered in Section 6.12.2.

In this type of equality, a dealer send secret shares of some value and the receiving
parties check the pairwise consistency of their shares. Specifically, suppose that
processor j and k are sent respective shares s

(j)
i and s

(k)
i (which are supposed to

be equal to a share si) and want to verify that their share are equal. In Maurer’s
protocol this is done by simply sending each other the shares and broadcasting a
complaint if they differ.

Instead of testing equality, both the j-th and k-th processor publish the ratio s
(j)
i ∗

(s
(k)
i)−1 between their two shares as a global variable. We argue that this does not

161

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

extend the view of the adversary. Indeed, if the adversary controls either processor
i, j or k then its view is not extended since it already knows both s

(j)
i and s

(k)
i . If

the adversary controls the fourth processor then its view is also not extended since
it will always see the neutral element of G (recall that since we deal with a four
processor protocol there is only one processor controlled by the adversary).

Suppose that one of these global variables vi,j,k corresponding to a share si was set
to a value not-equal to the neutral element. Then, as in the [DPS12a] protocol,
the dealer publishes si as a global value which is used by all parties as the correct
value of si. Note that the latter operation can be implemented solely using global
variables and computation over these global variables.

2. Equality type 2: The second type of equality operation occurs in the second step
of the NodeMult protocol. However, in this step after a processor tests whether
a = b, if a 6= b it just broadcasts the value a ∗ b−1. Thus, instead of testing a = b
we just set a ∗ b−1 as a global variable and use it as specified.

3. Equality type 3: The third type of equality operations occurs is on global vari-
ables. Since this computation is done over global variables we do not need to change
it (recall that we allow arbitrary computation over global variables).

4. Majority: A majority between three values a, b, c ∈ R (where there is no possibility
of a tie) is used in the [DPS12a] protocol only when a processor computes the
majority of three values that were broadcast by three processors. We replace these
broadcasts by publishing global variables and therefore the majority operation is
an operation done over global variables which we allow in our model.

Thus, we have the following theorem:

Theorem 6.23 ([DPS12a]). There exists an explicit four processor local protocol genera-
tor in the Active Group-MPC model that is secure against an active adversary that controls
a single processor.

Using Theorem 6.16 combined with Lemma 6.22 and our construction of a logarithmic
depth threshold formula from Th4

2 gates (Theorem 6.3), we obtain the following result in
the active model.

Theorem 6.24. There exists an explicit protocol generator in the Active Group-MPC
model that is secure against an active adversary that controls at most 1

3
−Ω(1√

logn
) of the

n processors.
Given a protocol for n processors that involves t group operations, the protocol gener-

ator outputs a protocol involving t · poly(n) group operations.

Proof. By Theorem 6.3, there exists an algorithm that on input n outputs a logarithmic
depth formula Fn composed of Th4

2 gates that outputs 0 for any input of normalized
Hamming weight 1

3
− Ω(1√

logn
) or less.

162

6.13 Secure MPC over Groups

Given a specification (π, τ) that involves n processors, the protocol generator generates
Fn and then applies Lemma 6.22 while using the [DPS12a] four processor local protocol
generator of Theorem 6.23.

6.13.3 Two-party protocols

In this section we establish the first feasibility results for secure two-party computation
over black-box groups. The result we get for the active corruption model illustrates the
usefulness of the “threshold from threshold” technique even in the context of two-party
cryptography.

Instead of basing our protocols on concrete cryptographic assumptions, we follow the
convention of allowing the parties access to an ideal oblivious transfer oracle. Recall that
an oblivious transfer (OT) [Rab81, EGL85] oracle computes a two-party function that
allows a receiver to obtain one out of two strings held by a sender, without revealing
to the sender which of the two strings it chose. We refer to secure computation in the
presence of an ideal OT oracle as secure computation in the OT-Hybrid model. The
advantage of working in the OT-Hybrid model is that it enables unconditional security.
Using composition theorems for secure computation, the ideal OT oracle can be replaced
by (a black-box access to) any secure OT implementation.

Our two-party protocols are statistically secure in the OT-Hybrid model. That is, the
parties are given a security parameter 1k and we require that for every adversary, there
exists an adversary in the ideal world whose view is exp(−k)-close to that of the real
world adversary. The running time of the two parties may depend polynomially on k
and polylogarithmically on (an upper bound on) the group size. Since the latter may
be inferred from the length of the identifiers of group elements in the standard generic
group model, this convention does not violate the “black-box” aspect of the model (and
in particular does not allow the protocol to learn the group structure).

In Section 6.13.3 we show a secure a two party passive protocol and in Section 6.13.3 we
show, using the compiler of Ishai, Prabhakaran and Sahai [IPS08], how to transform the
passive protocol together with the unconditionally secure active protocol of Section 6.13.2
into a two party actively secure protocol.

A two-party passively secure protocol

We denote the two parties by sender and receiver. The secure evaluation of a general
circuit over a group reduces to securely computing an iterated group product of the form
c = a1b1a2b2 · · · ambm where ai are the sender’s inputs, bi are the receiver’s inputs, and
the receiver gets the output c. (Indeed, this suffices for generating random shares of the
product xy given shares of x and shares of y.)

We will show a protocol for computing such an iterated group product in the OT-Hybrid
model where the view of each party can be simulated, up to 2−Ω(k) statistical distance,
given its input and output.

Before proceeding to the protocol we state and prove a lemma that will be useful in the
analysis of our protocol. The lemma generalizes a lemma of Impagliazzo and Naor [IN96]

163

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

on the subset sum problem. Recall that the statistical distance between two distributions
D1,D2 with support S is defined as SD(D1,D2) , maxA⊆S |Pr[D1 ∈ S]− Pr[D2 ∈ S]|.

Lemma 6.24. Let G be a finite group, let k > 0 be a security parameter and let s =
4k + log(|G|). Then, except for a 2−k fraction of r1, . . . , rs ∈ G it holds that:

SD(rw1
1 · · · rwss , g) < 2−k,

where w1, . . . , ws are uniformly distributed bits and g is uniformly distributed in G.

Proof. Consider the universal hash function family {hr1,...,rs : {0, 1}s → G}r1,...,rs∈G de-
fined as hr1,...,rs(w) =

∏s
i=1 r

wi
i . Then:

E
r1,...,rs∈G

[
SDw∈{0,1}s

g∈G
(hr1,...,rs(w), g)

]
= SDg,r1,...,rs∈G

w∈{0,1}s

(
(r1, . . . , rs, hr1,...,rs(w)), (r1, . . . , rs, g)

)
which, by the Leftover Hash Lemma24 [HILL99], is at most

√
|G|
2s

= 2−2k. The lemma

follows by an application of Markov’s inequality.

Lemma 6.24 is used to get a statistical secret sharing of group elements in the following
way. The receiver publishes s = 4k+log |G| public random group elements r1, ..., rs. Now,
for any w ∈ {0, 1}s we can represent a group element g using (w, g′) where g′ = g ∗

∏
rwii .

By the lemma, if we pick w at random then, except with 2−k probability over the choice
of ri, the element g′ is 2−k-close to uniform even when conditioned on the ri. This means
that (w, g′) form a statistical 2-out-of-2 secret sharing of g given public randomness
(r1, . . . , rs).

Using the above method for secret sharing group elements, the iterated group product
protocol proceeds as follows:

1. The receiver picks r1, ..., rs ∈ G uniformly at random and sends r1, . . . , rs to the
sender.

2. Using these ri, the receiver splits each of his inputs bi into (wi, b
′
i) and send b′i to

the sender. By Lemma 6.24, the view of the sender can be simulated up to 2−Ω(k)

statistical distance without knowing bi.

3. The sender can now write c as an iterated group product in which some slots
include his own inputs ai, some slots include the values b′i, and the rest include one
of two options: either 1 or an element r−1

j . The choice between the two options is
determined by the bit wi known to the receiver.

24A simplified version of the Leftover Hash Lemma states that if h is selected at random from a
universal hash function family from X to Y then the distribution (h, h(X)) and (h,Y) are at most√
|Y|
|X | -close (see, e.g., [Gol08, Appendix D]).

164

6.13 Secure MPC over Groups

4. The sender randomizes this product using Kilian’s group product randomization
technique [Kil88]. That is, we first write the product as g1(c1) ∗ · · · ∗ gn(cn) where
each gi is some function from {0, 1} to G known to the sender and ci is a choice bit
known to the receiver. The sender then picks random group elements q1, ..., qn−1

and lets g′1(c1) = g1(c1)q1, g
′
2(c2) = q−1

1 g2(c2)q2, . . . , g
′
n(cn) = q−1

n−1gn(cn).

5. The sender and receiver invoke the OT oracle n times, delivering to the receiver the
values g′i(ci) where ci are the receiver’s choice bits. The n received group elements
contain no more information than z =

∏
gi(ci).

The above protocol implies the following theorem.

Theorem 6.25. Let f be a two-party functionality defined by a circuit of size s over
a group G. Then f can be realized in the OT-Hybrid model by a protocol which has
statistical security against one passively corrupted party. The protocol requires a total of
O((k + log |G|)s) group operations for achieving 2−k simulation error.

A two party actively secure protocol

To get active security in the two-party model, we use the general compiler of [IPS08].
This compiler yields a 2-party protocol for a function f with statistical security against
active corruption in the OT-hybrid model by making a blackbox use of the following two
ingredients:

1. an “outer protocol” for f which employs k auxiliary parties (servers) in addition
to the two parties (clients) holding the inputs; this protocol should be perfectly
or statistically secure against active corruption provided that only some constant
fraction the servers can be corrupted; and

2. an “inner protocol” for implementing a reactive two-party functionality (“inner
functionality”) corresponding to the local computation of each server, in which the
server’s state is secret-shared between the two clients. In contrast to the outer
protocol, this protocol only needs to be secure against passive corruption. The
inner protocol can be implemented in the OT-Hybrid model.

We instantiate the outer protocol with the efficient protocol from Theorem 6.24 and
the inner protocol with the two-party protocol from Theorem 6.25. The details of this
combination are analogous to those used for secure two-party computation over black-box
rings in [IPS09]. The crucial observation is that when the parties in the outer protocol
only make a blackbox use of a group G, then the functionality realized by the inner
protocol is also cast in the blackbox model and so parties in the inner protocol can make
a blackbox use of G. We refer the reader to [IPS09] for more details.

The result for the active two-party model is summarized by the following theorem.

Theorem 6.26. Let f be a two-party functionality defined by a circuit of size s over
a group G. Then f can be realized in the OT-Hybrid model by a protocol which has

165

6. EFFICIENT MULTIPARTY PROTOCOLS VIA LOG-DEPTH
THRESHOLD FORMULAE

statistical security against one actively corrupted party. The protocol requires a total of
poly(k) · log |G| · s group operations for achieving 2−k simulation error.

166

Chapter 7

On Rigid Matrices and
U-Polynomials

7.1 Matrix Rigidity

Motivated by the problem of proving lower bounds for linear circuits, [Val77] introduced
the notion of matrix rigidity. Let A be an m×n matrix over a finite field F. We consider
the linear mapping x 7→ Ax, and ask how hard it is to compute by linear circuits. A linear
circuit is a circuit on n inputs and m outputs, that is composed of some subset of the gates
{Ga,b}a,b∈F, where Ga,b is a fan-in two gate that computes the function Ga,b : F× F→ F
defined by Ga,b(x, y) = ax + by. The size of a circuit is the number of gates it contains.
The depth of a circuit is the number of gates in the longest path from an input to an
output. In this chapter, which covers a joint work with Alon [AC13], we will focus on
F = F2. Note that in this case the only allowed gate is the Parity gate.

A simple counting argument shows that most linear mappings with m = Θ(n) have
size Ω(n2/ log n). Nevertheless, currently there is no explicit linear mapping we know of,
that has size ω(n). In fact, even after more than three decades of study, there is no known
linear mapping that cannot be computed by a circuit with linear size and logarithmic
depth simultaneously. [Val77] suggested a route for resolving the latter problem by giving
a sufficient condition for a matrix A that ensures the matrix cannot be computed by
linear-sized linear circuits with logarithmic depth. The property suggested by Valiant
essentially requires that the rank of A is robust against alterations to a small number
of entries. There are a few variants of this notion. For more information, we refer the
reader to a recent survey by [Lok09].

Definition 7.1 (Matrix Rigidity). Let A be an m×n matrix over F2. A is called (k, d)-
rigid if for every m× n matrix R with rank at most k, the matrix A−R contains a row
with at least d non-zero entries.

The above definition states that a matrix A is (k, d)-rigid if one cannot decrease the
rank of A to k by altering less than d entries in each row of A. The following theorem,
due to Valiant, has motivated the study of matrix rigidity.

167

7. ON RIGID MATRICES AND U-POLYNOMIALS

Theorem 7.1 ([Val77]). Let A be an m × n matrix over F2, where m = O(n). If A is
(Ω(n), nΩ(1))-rigid, then any linear circuit with depth O(log n) that computes A, has size
Ω(n · log log n).

[APY09] presented the problem of constructing rigid matrices in an equivalent, yet
conceptually different way. To describe it, we need the following standard definition of
distance between a point and a set.

Definition 7.2. For x ∈ Fn2 and U ⊆ Fn2 , define the Hamming distance of x from U by
distH(x, U) = minu∈U |x+ u|, where |v| denotes the Hamming weight of the vector v.

Definition 7.3 (Rigid Sets). A set S ⊆ Fn2 is called (n, k, d)-rigid if for every subspace
U ⊆ Fn2 of dimension k, it holds that maxs∈S distH(s, U) ≥ d.

It is an easy exercise to show that an (n, k, d)-rigid set S with size m induces a (k, d)-
rigid matrix with size m× n, and vice versa. We will also discuss the following stronger
variant of rigid sets.

Definition 7.4 (Strong Rigid Sets). A set S ⊆ Fn2 is called strong (n, k, d)-rigid if for
any dimension k subspace U ⊆ Fn2 , it holds that Es∼S [distH(s, U)] ≥ d.

Clearly, every strong rigid set is a rigid set with the same parameters. For impli-
cations to complexity theory using Valiant’s Theorem (7.1), one needs to construct an
(n,Ω(n), nΩ(1))-rigid set with size O(n). Thus, historically, the study of matrix rigidity fo-
cused on the tradeoff between k and d while fixingm = O(n) [Fri93, Lok95, SSS97, KR98].
Given that after more than three decades of research we seem to be far from achieving a
tradeoff between k, d that would suffice for establishing Theorem 7.1, [APY09] initiated
the study of the tradeoff between m and d while fixing k = n/2. In this setting one no
longer insists on m = O(n), but aims at getting m as small as possible as a function of
d. The end goal would be to achieve m = O(n) + dc, for any constant c, which would
suffice for applications to lower bounds via Theorem 7.1. Unfortunately, the construction
of [APY09] yields m = n · 2O(d).

Before presenting the contribution of this chapter, that covers [AC13], we mention
here a completely different approach for constructing rigid matrices. [Dvi10] related the
rigidity of a matrix with the local correctable properties of the linear code induced by the
matrix. More specifically, the author showed that if the generating matrix of any locally
decodable code is not rigid, then there exists a locally correctable code with rate close
to one. Hence, proving that locally correctable codes with such parameters do not exist
will give rise to explicit construction of rigid matrices.

7.2 Our Contribution

In a joint work with Alon [AC13], on which this chapter is based on, we suggest a new
approach for constructing rigid sets (or equivalently, rigid matrices). Throughout the
chapter we let ρ ∈ (0, 1) be a parameter. The parameter ρ does not need to be constant,

168

7.2 Our Contribution

though it is best to think of ρ as a constant that is close to 1. Central to our approach
are polynomials with a special structure, which we call U-polynomials.

Definition 7.5 (U -Polynomials). For a subspace U ⊂ Fn2 , define the mapping pU : Fn2 →
R as follows 1

pU(x) =
1

Wρ(U)
·
∑
u∈U

ρ|u| · (−1)<u,x>,

where Wρ(U) =
∑

u∈U ρ
|u| is the weight enumerator of U with parameter ρ. The mapping

pU is called the U -polynomial.

We emphasize that the mapping pU is indeed a polynomial if one chooses to represent
it using the the domain {±1} rather than {0, 1}. More precisely, one can identify the
function pU defined above with the polynomial p′U : {±1}n → R given by

p′U(x) =
1

Wρ(U)
·
∑
u∈U

ρ|u| ·
∏
i|ui=1

xi,

for the same U ⊂ Fn2 . Namely, the respective polynomial has a monomial for each element
in U , with coefficient that depends only on the weight of the element.

Let Pk be the class of all U -polynomials pU , where U ⊂ Fn2 has dimension k. One can
show that for any subspace U and for any x ∈ Fn2 , 0 < pU(x) ≤ 1 2, where equality to 1
holds if and only if x ∈ U⊥. Our first main theorem shows that pU⊥(x) is related to the
Hamming distance of x from U .

Theorem 7.2. Let U ⊂ Fn2 be a subspace. Then, for any ρ ∈ (0, 1), and any x ∈ Fn2 ,

distH(x, U) ≥
(

log
1 + ρ

1− ρ

)−1

· log
1

pU⊥,ρ(x)
.

By Theorem 7.2, the problem of explicitly constructing an (n, k, d)-rigid set is reduced
to that of explicitly constructing a set S such that for every U ⊂ Fn2 with dimension n−k,
there exists s ∈ S such that pU(s) ≤ 2−Ω(d). We informally refer to such sets as hitting
sets for Pn−k, as for values of k of interest (say, k = αn for a constant α ∈ (0, 1)), pU
evaluated on a random point is exponentially small in n, with high probability.

Similarly, by Theorem 7.2, the problem of explicitly constructing a strong (n, k, d)-
rigid set is reduced to the problem of explicitly constructing a set S such that for every
U ⊂ Fn2 of dimension n − k, for at least, say, half of the elements s ∈ S it holds that
pU(s) ≤ 2−Ω(d). If A is an algorithm that given n, k, d as inputs, constructs such a set S,
then we informally refer to A as a pseudorandom generator for Pn−k.

1For the sake of readability, we suppress ρ in the notation when it is clear from context.
2The upper bound is trivial, while the lower bound is implicit in the proof of Theorem 7.2.

169

7. ON RIGID MATRICES AND U-POLYNOMIALS

Small-bias sets as rigid sets. Unfortunately, we are unable to use the reduction above
to obtain improved rigid sets. We hope that this reduction will be used as a starting point
for future constructions of rigid sets. In this work we make use of Theorem 7.2 to show
that small-bias sets (see Section 2) are strong rigid sets. However, their size is larger than
desired.

Theorem 7.3. Let n, d be such that d ≤ c · n for some suitable constant 0 < c < 1. Let
S ⊂ Fn2 be an exp(−d)-biased set. Then S is an (n, n/2, d)-strong rigid set.

Theorem 7.3 is implicit in the work of [AS10], who studied the related remote point
problem. In [AC13] we give three proofs for the fact that any small-bias set is a rigid set,
with related parameters. One of our proofs is an easy corollary of Theorem 7.2.

Rigid sets from unbalanced expanders. We further show how to construct rigid
sets from unbalanced expanders (see Section 2.5 for a formal definition of unbalanced
expanders). Specifically, we prove the following theorem.

Theorem 7.4. Let G = (L,R,E) be a (kmax, 2/3)-bipartite expander with L = [m],
R = [n] and left-degree 4d. For every ` ∈ L define a vector c` ∈ Fn2 as follows: for i ∈ [n],

(c`)i =

 1, `i ∈ E;

0, otherwise.

If
kmax/2∑
i=0

(
m

i

)
> 2k,

then the set C = {c` : ` ∈ L} is (n, k, d)-rigid.

The proof of Theorem 7.4 applies a different argument than any of the proofs for
Theorem 7.3. In particular, it does not use the reduction to the problem of constructing
hitting sets for U -polynomials. Moreover, it is interesting to note that the two rigid sets
constructed in Theorem 7.3 and Theorem 7.4 have a different structure. Indeed, a typical
element in a small-bias set S ⊆ Fn2 has weight roughly n/2. On the other hand, every
element in the construction that is based on unbalanced expanders has weight at most
4d. Nevertheless, plugging the unbalanced expander that is obtained by the probabilistic
method 3 yields an (n, k, d)-rigid set with size n · exp(d · k/n). For k = n/2 this coincides
with the size of the rigid set obtained by small-bias sets. Furthermore, we give a reduction
from the construction of (n, k, d)-strong rigid sets to the construction of (n, n/2, d)-strong
rigid sets. This reduction together with the construction from Theorem 7.3 yields the
exact same size as the construction based on unbalanced expanders.

3The state of the art explicit construction for unbalanced expanders due to [GUV09] falls short of
achieving the parameters of the probabilistic construction. This in turn gives a rigid set with a somewhat
larger size.

170

7.3 U-Polynomials

7.2.1 Basic Facts in Fourier analysis

In this section we cover the required tools needed from Fourier analysis. We refer the
reader to a recent book of [O’D] for a comprehensive treatment.

Consider all functions of the form f : Fn2 → R. These form a vector space F over
F2, where addition is conducted in a point-wise manner, that is, for every f, g ∈ F , the
function f + g is defined by (f + g)(x) = f(x) + g(x). For every α ∈ Fn2 , χα : Fn2 → R
is defined by χα(x) = (−1)<α,x>. It is easy to see that {χα : α ∈ Fn2} is a basis for F .
This basis is called the Fourier basis for F . Define an inner product over F as follows:
for every f, g ∈ F , < f, g >= 2−n ·

∑
x∈Fn2

f(x)g(x). It is easy to see that < χα, χβ > = 1
if α = β, and 0 otherwise. Under the above inner product, the Fourier basis is an
orthonormal basis. Thus, every f ∈ F can be expanded according to the Fourier basis as
follows f =

∑
α∈Fn2

f̂(α)χα, where f̂(α) = < f, χα > is called the Fourier coefficient of f
on point α.

Let 0 ≤ ε ≤ 1. The noise operator Tε : F → F is defined by

Tε(f)(x) =
∑
y∈Fn2

(
1− ε

2

)|y|
·
(

1 + ε

2

)n−|y|
f(x+ y) .

Fact 7.6. For every f ∈ F , 0 ≤ ε ≤ 1 and α ∈ Fn2 ,

T̂ε(f)(α) = ε|α| · f̂(α).

7.3 U-Polynomials

This section studies U -polynomials. We start by proving Theorem 7.2. The main intu-
ition behind the proof of Theorem 7.2 is to work with “scalar fields”4 rather than with
“distances”. Recall that a scalar field associates a scalar, which in our case is some
non-negative real number, to each point in the space. We now elaborate on this. Let
U ⊆ Fn2 be a subspace. Imagine that at every point u ∈ U we place a source of light that
emits radiation to its surrounding, with intensity that decays with distance. Then, every
point x ∈ Fn2 senses the sum of radiations coming to it from all points in U . From this
perspective, finding a point that is far from U boils down to locating a point that senses
a small amount of radiation, that is, a dark point. The formal definition of this energy
function is as follows.

Definition 7.7. For a parameter ρ ∈ (0, 1) and a subspace U ⊆ Fn2 , define the function
energyU,ρ : Fn2 → R as follows

energyU,ρ(x) =
1

Wρ(U)
·
∑
u∈U

ρ|u+x| .

4Here the word field takes its meaning from physics and has nothing to do with algebraic fields.

171

7. ON RIGID MATRICES AND U-POLYNOMIALS

When it is not needed to specify one or more of the parameters ρ, U , we omit them.
We note that energyU(x) ∈ (0, 1], and that energyU(x) = 1 if and only if x ∈ U . (The lower
bound is obvious, whereas the upper bound and the characterization of equality follows
from Equation (7.3) below.) Thus, not surprisingly, a maximum amount of radiation is
sensed on the subspace U itself. Moreover, for a uniformly sampled x ∈ Fn2 , energyU(x) is
exponential in Ω(k− n), where k = dim(U). That is, a typical point in Fn2 senses a small
amount of radiation, and so most of Fn2 is dark.

For the proof of Theorem 7.2, we will need the following theorem due to MacWilliams
(see, e.g., [MS77]), that relates the weight enumerator of a subspace with that of its dual.
We state the theorem for the binary field only.

Theorem 7.5 (MacWilliams’s Theorem). Let U ⊆ Fn2 be a subspace of dimension k. For
every 0 < ρ < 1 it holds that

Wρ(U
⊥) =

(1 + ρ)n

2k
·W 1−ρ

1+ρ
(U).

We are now ready to prove Theorem 7.2.

Proof of Theorem 7.2. Let 1U : Fn2 → {0, 1} be the characteristic function for U . That
is, 1U(x) = 1 if and only if x ∈ U . Then,

Tρ(1U)(x) =
∑
y∈Fn2

(
1− ρ

2

)|y|
·
(

1 + ρ

2

)n−|y|
· 1U(x+ y)

=

(
1 + ρ

2

)n
·
∑
y∈Fn2

(
1− ρ
1 + ρ

)|y|
· 1U(x+ y)

=

(
1 + ρ

2

)n
·
∑
u∈U

(
1− ρ
1 + ρ

)|u+x|

=

(
1 + ρ

2

)n
·W 1−ρ

1+ρ
(U) · energyU, 1−ρ

1+ρ
(x). (7.1)

On the other hand, it is easy to see that

1̂U(α) =

 2k−n, α ∈ U⊥;

0, otherwise.

172

7.3 U-Polynomials

Hence, by Fact 7.6

Tρ(1U)(x) =
∑
α∈Fn2

T̂ρ(1U)(α) · (−1)<α,x>

=
∑
α∈Fn2

1̂U(α) · ρ|α| · (−1)<α,x>

= 2k−n ·
∑
α∈U⊥

ρ|α| · (−1)<α,x>

= 2k−n ·Wρ(U
⊥) · pU⊥,ρ(x)

=

(
1 + ρ

2

)n
·W 1−ρ

1+ρ
(U) · pU⊥,ρ(x), (7.2)

where the last equality follows by Theorem 7.5. By Equations (7.1),(7.2) we have that

energyU, 1−ρ
1+ρ

(x) = pU⊥,ρ(x). 5 (7.3)

Assume now that distH(x, U) = d. Then there exists w ∈ U such that |x + w| = d.
Therefore,

W 1−ρ
1+ρ

(U) · energyU, 1−ρ
1+ρ

(x) =
∑
u∈U

(
1− ρ
1 + ρ

)|u+x|

(1)
=
∑
u∈U

(
1− ρ
1 + ρ

)|u+x+w|

(2)

≥
∑
u∈U

(
1− ρ
1 + ρ

)|u|+|x+w|

=

(
1− ρ
1 + ρ

)d
·
∑
u∈U

(
1− ρ
1 + ρ

)|u|
=

(
1− ρ
1 + ρ

)d
·W 1−ρ

1+ρ
(U).

Equality (1) uses the fact that U is a subspace, and in particular, the fact that for every
w ∈ U , the function f(u) = u+w is a bijection from U to U . Inequality (2) holds by the
triangle inequality, and by the fact that (1− ρ)/(1 + ρ) < 1. Thus, by Equation (7.3),

pU⊥,ρ(x) ≥
(

1− ρ
1 + ρ

)d
,

which concludes the proof of the theorem.

5By this equality, it follows that U -polynomials are positive.

173

7. ON RIGID MATRICES AND U-POLYNOMIALS

One may ask whether there is a quantitative loss in the reduction from the problem of
constructing rigid sets to the problem of constructing hitting sets for U -polynomials. Sim-
ilarly, is there a quantitative loss in the reduction from the problem of constructing strong
rigid sets to the problem of constructing pseudorandom generators for U -polynomials ?
We answer this question negatively in Corollary 7.7.2. To this end, we need the following
claim about the weight enumerator.

Claim 7.7.1. For any ρ ∈ (0, 1) and for any subspace U ⊆ Fn2 of dimension n/2, it holds
that

Wρ(U) ≥
(

1 + ρ√
2

)n
.

Proof. Consider a coset x+ U of the subspace U . By Equation (7.3),

1

Wρ(U)
·
∑
u∈U

ρ|u+x| = energyU,ρ(x) = pU⊥, 1−ρ
1+ρ

(x).

The right hand side is clearly bounded above by 1, and so
∑

u∈U ρ
|u+x| ≤

∑
u∈U ρ

|u| for
all x. However, the summation of

∑
u∈U ρ

|u+x| over all 2n/2 cosets is exactly
∑

w∈Fn2
ρ|w| =

(1 + ρ)n, which completes the proof.

Claim 7.7.2. Let ρ ∈ (
√

2− 1, 1) be a constant parameter. Then, with high probability,
a random set S ⊂ Fn2 of size O(n) has the following property: for every pU ∈ Pn/2, for at
least half of the elements s ∈ S it holds that pU(s) ≤ 2−Ω(n).

Proof. Let pU ∈ Pn/2. Then

µ , Ex∼Fn2 [pU(x)]

= Ex∼Fn2

[
1

Wρ(U)
·
∑
u∈U

ρ|u|(−1)<u,x>

]

=
1

Wρ(U)
·
∑
u∈U

ρ|u| · Ex∼Fn2 [(−1)<u,x>]

=
1

Wρ(U)
,

where the last equality holds as all summands are zero but for u = 0, which contributes
1 to the sum. By Corollary 7.7.1,

µ =
1

Wρ(U)
≤

(√
2

1 + ρ

)n

.

For any ρ >
√

2 − 1 the base of the exponent in the above equation is smaller than 1,
and so, for any such ρ, there exists a constant α = α(ρ) > 0 such that µ < 2−αn. Thus,
by Markov’s inequality,

Pr
x∼Fn2

[
pU(x) > 2−αn/2

]
≤ 2−αn/2.

174

7.4 Small-Bias Sets as Rigid Sets

Let m be an integer to be determined later.

Pr
x1,...,xm∼Fn2

[
∃S ⊆ [m], |S| = m

2
s.t. ∀i ∈ S pU(xi) > 2−αn/2

]
(7.4)

≤
(
m

m/2

)
·
(
2−αn/2

)m/2
.

The number of subspaces of dimension n/2 in Fn2 is bounded by
(

2n

n/2

)
6, and so by the

union bound, the probability that there exists U of dimension n/2 for which the event in
Equation (7.4) holds is bounded above by(

2n

n/2

)
·
(
m

m/2

)
·
(
2−αn/2

)m/2
< 2n

2/2 · 2m · 2−αnm/4.

For m = (7/α) · n the right hand side in the above expression is bounded by 2−n
2
, for

large enough n. This concludes the proof of the claim.

7.4 Small-Bias Sets as Rigid Sets

Small-bias sets introduced by [NN93], are pseudorandom objects that have found nu-
merous applications in theoretical computer science (see, e.g., Chapter 3). For ease of
readability we recall here the formal definition (see also Section 2).

Definition 7.8 (Small-bias sets, [NN93]). Let S ⊆ Fn2 . We say that S is an ε-biased set
if for every 0 6= α ∈ Fn2 it holds that∣∣∣Es∼S [(−1)<α,s>]

∣∣∣ ≤ ε.

A minor technicality when working with small-bias sets is repetition of elements in the
set. To avoid ambiguity, when working with small-bias sets we do not ignore repetitions
of elements, that is, we consider small-bias sets as multi-sets. Put differently, we think
of small-bias sets as sample spaces, where an element is sampled with probability that is
proportional to the element’s multiplicity in the set.

A simple probabilistic argument shows that there exist ε-biased sets in Fn2 with size
O(n/ε2). Several explicit constructions of small-bias sets were introduced by [AGHP92,
ABN+92, NN93, BT09]. Unfortunately, none of the explicit constructions achieves the
size obtained by the probabilistic argument.

In this section we give three proofs for the fact that any small-bias set is a rigid
set, with related parameters, as formalized in Theorem 7.3. As mentioned, a proof for
Theorem 7.3 is implicit in [AS10]. In that paper, the authors consider the remote point
problem, which is defined as follows. Given a basis for a subspace U ⊆ Fn2 , find in time
poly(n) a point r ∈ Fn2 such that distH(r, U) is large. Informally speaking, the remote

6In fact, a tighter bound of roughly 2n
2/4 can be easily proven.

175

7. ON RIGID MATRICES AND U-POLYNOMIALS

point problem can be seen as a relaxation of the problem of constructing rigid sets.
Indeed, in the remote point problem, the subspace is given as an input to the algorithm
(in a succinct representation), whereas rigid sets contain a point that is far from any
subspace with small enough dimension. The authors showed that any small-bias set with
appropriate parameters contain a point that is far from the given subspace U . Since the
small-bias set used in their proof depends only on the dimension of U , their proof yields
Theorem 7.3, and with the same parameters.

Using, for example, the construction of [ABN+92] for small-bias sets, Theorem 7.3
yields an (n, n/2, d)-strong rigid set with size n · exp(d). This matches the construction
of [APY09]. Applying the reduction from Section 7.6, we get an explicit construction of
a strong (n, k, d)-rigid set with size n · exp(d · k/n).

7.4.1 Proof of Theorem 7.3 based on U-polynomials

Proof of Theorem 7.3. Let S ⊆ Fn2 be an ε-biased set, and U a subspace of dimension
n/2. Then,

Ex∼S[pU(x)] =
1

Wρ(U)
· Ex∼S

[∑
u∈U

ρ|u| · (−1)<u,x>

]

=
1

Wρ(U)
·
∑
u∈U

ρ|u| · Ex∼S [(−1)<u,x>].

Any summand except for u = 0 is bounded in absolute value by ε. Thus,

Ex∼S[pU(x)] < ε+
1

Wρ(U)
.

Assume for now that we will pick ε > 1/Wρ(U), and so we can further simplify to get
Ex∼S[pU(x)] < 2ε. Since log(1/x) is a convex function, we get, by Jensen’s inequality
that

Ex∼S
[
log

(
1

pU(x)

)]
≥ log

(
1

Ex∼S[pU(x)]

)
≥ log

(
1

2ε

)
.

Since we are working with subspaces of dimension n/2, the above equation also holds for
the dual of every subspace of dimension n/2. Thus, by Theorem 7.2, for every subspace
U ⊂ Fn2 with dimension n/2, it holds that

Ex∼S [distH(x, U)] = Ω

(
log

1

ε

)
.

Recall that in our case m = O(n/ε3), and so setting m = n · 2Θ(d) would give that S is
an (n, n/2, d)-strong rigid set with size m.

We now return to the assumption we made, namely, that ε > 1/Wρ(U). Eventually we
chose ε = exp(−d), and so to justify the assumption, it is enough to show that Wρ(U) >
exp(d). By Corollary 7.7.1 we have that Wρ(U) ≥ ((1 + ρ)/

√
2)n. For ρ >

√
2 − 1, the

base of the exponent is larger than 1. For any such ρ, there exists a constant c = c(ρ) > 0
such that our assumption is met as long as d ≤ c · n.

176

7.4 Small-Bias Sets as Rigid Sets

7.4.2 The bias-reduction proof

Our second proof relies on the Parity Lemma (c.f., for example, [NN93]).

Lemma 7.9 (The Parity Lemma). Let S ⊆ {0, 1}n be an ε-biased set. Let T ⊆ [n] be a
non-empty set of size k. Denote by ST the projection of S on the index set T . Then,

SD(ST ,Uk) ≤ ε · 2k/2.

Roughly speaking, Lemma 7.9 states that the projection of a small-bias set on a
small number of coordinates is close, in statistical distance, to the uniform distribution.
Since a random vector is, with high probability, far from any given subspace with small
dimension, one would hope that a typical vector in a small-bias set would also be far
from any given subspace. This idea fails because although the bound on the statistical
distance guaranteed by the Parity Lemma depends linearly on the bias of the small-bias
set, it depends exponentially on n, the length of the vectors.

A natural suggestion for circumventing this problem is to partition the set of indices
[n] to blocks and apply the argument above to each block separately. This way, the
statistical distance guaranteed by the Parity Lemma will be exponential in the block
length, which can be controlled, as opposed to being exponential in n. However, this
suggestion fails as well since one must take the block length large enough so that the
projection of the subspace on a block would still have small dimension with respect to
the block length. Indeed, otherwise a random vector would not necessarily be far from
the projection.

As mentioned, the statistical distance guaranteed by the Parity Lemma depends lin-
early on the bias of the small-bias set and exponentially on n. The natural idea above
tried to obtain a better guarantee on the statistical distance by decreasing the exponen-
tial part as it naturally seems to cause the problem. However, this idea failed. The idea
behind the “bias-reduction proof” as its name suggests, is to reduce the bias enough so
as to cancel the exponential loss incurred by the Parity Lemma. The way we reduce the
bias is by applying the above argument not to the original small-bias set S, but rather
to the set S + · · ·+ S, where the number of summands depends on the distance, d, that
we want to achieve. The bias of this sum decreases exponentially with the number of
summands (see Claim 7.9.1 below). This cancels out the exponential loss we incur by the
Parity Lemma, as desired. This shows that S+ · · ·+S is a strong rigid set with very good
parameters. We then show that this implies that S itself must also be a strong rigid set,
albeit with weaker parameters. We now make this formal. We need the following claim.

Claim 7.9.1. Let S be an ε-biased set. Then, for every integer c ≥ 1, c ·S is an εc-biased
set.

177

7. ON RIGID MATRICES AND U-POLYNOMIALS

Proof. For any 0 6= α ∈ Fn2
|Ex∼c·S [(−1)<α,x>]| =

∣∣Es1,...,sc∼S [(−1)<α,s1+···+sc>
]∣∣

=

∣∣∣∣∣Es1,...,sc∼S
[

c∏
i=1

(−1)<α,si>

]∣∣∣∣∣
=

c∏
i=1

|Esi∼S [(−1)<α,si>]| ≤ εc.

We are now ready to give the bias-reduction proof for Theorem 7.3.

Proof of Theorem 7.3. Let S be a 2−c
′d-biased set for a constant c′ > 0 to be determined

later on. Let S ′ = (n/20d) · S. By Claim 7.9.1, S ′ is a 2−c
′n/20-biased set. Let U ⊂ Fn2 be

a subspace of dimension n/2. By standard counting arguments one can show that

Pr
x∼Fn2

[
distH(x, U) >

n

10

]
> 0.6.

By the Parity Lemma (Lemma 7.9), we have that

SD (S ′,Fn2) ≤ 2−c
′n/20+n/2 < 0.1,

where the last inequality holds for a sufficiently large constant c′. We choose c′ accord-
ingly. Thus,

Pr
x∼S′

[
distH(x, U) >

n

10

]
> 0.5.

In particular, the latter implies that

Ex∼S′ [distH(x, U)] >
n

20
.

Recall that S ′ = (n/20d) · S, and so the above equation can be written as

Es1,...,sn/20d∼S

distH

n/20d∑
i=1

si, U

 > n

20
. (7.5)

At this point we note that for every s1, . . . , sn/20d ∈ S
n/20d∑
i=1

distH(si, U) ≥ distH

n/20d∑
i=1

si, U

 .

Indeed, for i ∈ [n/20d], let ui ∈ U be such that distH(si, U) = |si + ui|. Then,

n/20d∑
i=1

distH(si, U) =

n/20d∑
i=1

|si + ui| ≥

∣∣∣∣∣∣
n/20d∑
i=1

si +

n/d∑
i=1

ui

∣∣∣∣∣∣ ≥ distH

n/20d∑
i=1

si, U

 ,

where the last inequality follows since U is closed under addition. Plugging this into
Equation (7.5) and using linearity of expectation, we get that Es∼S[distH (s, U)] > d,
which concludes the proof.

178

7.4 Small-Bias Sets as Rigid Sets

7.4.3 The covering proof

We now give a third proof for Theorem 7.3. We need some preliminary definitions and
results regarding expander graphs. For more information regarding expander graphs we
refer the reader to the survey by [HLW06].

Let G = (V,E) be an undirected D-regular graph on N vertices. Let AG be the
normalized adjacency matrix of G. That is, for u, v ∈ V , (AG)uv equals the number of
edges connecting the vertices u, v, divided by D. It is well-known that the eigenvalues of
AG are all real numbers, and that the maximum eigenvalue is 1. The graph G is called
(N,D, λ)-expander if the second largest eigenvalue in absolute value is at most λ.

For a subset S ⊂ V , let e(S) be the number of edges in the induced subgraph of G
on S. The quantity e(S) measures the density of this induced subgraph. In [AC88], the
following lemma was proved. Roughly speaking, the lemma states that induced subgraphs
of expanders have approximately the “right” density.

Theorem 7.6 ([AC88], Lemma 2.3). Let G = (V,E) be an (N,D, λ)-expander. Then,
for any set S ⊆ V with size |S| = αN∣∣∣∣e(S)− 1

2
Dα2N

∣∣∣∣ ≤ 1

2
λDα(1− α)N.

We also need the following theorem proved in [AR94].

Theorem 7.7 ([AR94]). Let S ⊆ Fn2 be an ε-biased set. Define the graph GS = (V,E)
as follows. V = Fn2 , and an edge connects a pair of vertices u, v if and only if u+ v ∈ S.
Then, GS is a (2n, |S|, ε)-expander.

With the two theorems above we are ready to prove the following lemma. A similar
lemma was proved by [PR04] and by [AS10]. Here we give a somewhat simpler proof.

Lemma 7.10. Let S ⊆ Fn2 be an ε-biased set. Then, for any subspace U ⊆ Fn2 ,∣∣∣∣ |S ∩ U ||S|
− |U |

2n

∣∣∣∣ ≤ ε.

Remark. Recall that a set S is ε-biased if for every nonzero x ∈ {0, 1}n it holds that
|Prs∼S[〈x, s〉 = 0] − Prs∼S[〈x, s〉 = 1]| ≤ ε. Equivalently, S is ε-biased if for every
subspace U with co-dimension 1 it holds that∣∣∣∣ |S ∩ U ||S|

− |U |
2n

∣∣∣∣ ≤ ε

2
.

Lemma 7.10 shows that if S is ε-biased, the above equation holds (up to a factor of 2)
for all subspaces, regardless of their dimension.

179

7. ON RIGID MATRICES AND U-POLYNOMIALS

Proof. Define the graph GS = (V,E) as in Theorem 7.7. That is V = Fn2 , and an edge
connects a pair of vertices u, v if and only if u + v ∈ S. By Theorem 7.7, GS is a
(2n, |S|, ε)-expander. Let U ⊂ Fn2 = V be a subspace of dimension k. For u ∈ U , the
degree of u in the induced subgraph of GS on U is

|{s ∈ S : u+ s ∈ U}| = |{s ∈ S : s ∈ U}| = |S ∩ U |.

Thus,

e(S) =
1

2
· |U | · |S ∩ U |.

By Theorem 7.6, ∣∣∣∣∣|U | · |S ∩ U | − |S| ·
(
|U |
2n

)2

· 2n
∣∣∣∣∣ ≤ ε · |S| · |U |,

or equivalently, ∣∣∣∣ |S ∩ U ||S|
− |U |

2n

∣∣∣∣ ≤ ε,

which concludes the proof of the lemma.

Proof of Theorem 7.3. Let U ⊂ Fn2 be a subspace of dimension n/2. We now describe the
covering of the neighborhood of U , proposed in [APY09]. Partition the n unit vectors of
Fn2 into 8d sets B1, . . . , B8d of size n/8d each. For every set I ⊆ [8d] with size |I| = 2d,
define

UI = Span

(
U ∪

⋃
i∈I

Bi

)
.

We note that dim(UI) ≤ 3n/4 for every I, as we add to U , which has dimension n/2,
(n/8d) · 2d unit vectors, thus increasing U ’s dimension by at most n/4. Moreover, it is
easy to see that every vector x satisfying distH(x, U) ≤ 2d is contained in UI for some I.
Let S be an ε-biased set. By Lemma 7.10, for every I as above,

|S ∩ UI | ≤ |S| ·
(
2−n/4 + ε

)
.

There are
(

8d
2d

)
< 120d such sets I, and as mentioned, they cover the 2d-neighborhood of

U . Therefore, S intersects the 2d-neighborhood of U in at most 120d · |S| ·
(
2−n/4 + ε

)
vectors. As we assume d ≤ c ·n, for small enough constant c, setting ε = 120−d/4 implies
that at most half of the vectors in S are contained in the 2d-neighborhood of U . Thus,
Es∼S [distH(s, U)] ≥ d.

7.5 Rigid Sets from Unbalanced Expanders

We start this section by recalling some preliminary definitions and results regarding
unbalanced expanders (see also Section 2). Let G = (L,R,E) be a bipartite graph with
|L| = m, |R| = n, and left-degree d. For a set S ⊆ L define

Γ(S) = {r ∈ R : ∃s ∈ S such that sr ∈ E},

180

7.5 Rigid Sets from Unbalanced Expanders

and
Γ1(S) = {r ∈ R : ∃!s ∈ S such that sr ∈ E}.

G is called (kmax, 1− ε)-bipartite-expander if for every S ⊆ L with size at most kmax,
it holds that |Γ(S)| ≥ (1 − ε)d|S|. G is called (kmax, 1 − ε)-unique neighbor expander if
for every S ⊆ L with size at most kmax it holds that |Γ1(S)| ≥ (1− ε)d|S|. The following
simple well-known fact relates the two definitions.

Fact 7.11. Every (kmax, 1 − ε)-bipartite expander is a (kmax, 1 − 2ε)-unique neighbor
expander.

Proof. Consider a nonempty set of left-vertices S ⊆ L of size at most kmax. The number
of outgoing edges from S is d · |S|. Hence,

d · |S| ≥ 1 · |Γ1(S)|+ 2 · (|Γ(S)| − |Γ1(S)|).

The proof then follows since |Γ(S)| ≥ (1− ε)d|S|.

We will be interested in the case where m = ω(n). Such bipartite expanders are called
unbalanced expanders. The following fact shows that given any plausible n, d, kmax ∈ N
and ε ∈ (0, 1), there exist highly unbalanced expanders, that is, (kmax, 1 − ε)-bipartite
expanders with large m.

Fact 7.12. Let n, d ∈ N, and let 1
d
< ε < 1. For any kmax ≤ e−2/ε · n

d
there exists a

(kmax, 1− ε)-bipartite expander with m = Ω(kmax · ed).

In particular, for constant ε, Fact 7.12 implies that for large enough n, d, there exist
(kmax, 1− ε)-bipartite expanders with kmax = Ω(n

d
), and m = Ω(n

d
· ed).

Proof. Let G = (L,R,E) be a bipartite graph with |L| = m, |R| = n, where every vertex
in L is connected to d vertices in R, sampled uniformly and independently at random.
We show that, with positive probability, G is a (kmax, 1−ε)-bipartite expander. This will
conclude the existential claim.

Fix 1 ≤ k ≤ kmax and a subset S ⊂ L of size k. By union bound, the probability that
|Γ(S)| < (1− ε)dk is bounded above by(

n

(1− ε)dk

)
·
(

(1− ε)dk
n

)dk
.

Thus, the probability that |Γ(S)| < (1− ε)dk for some subset S ⊂ L of size k is bounded
above by (

m

k

)
·
(

n

(1− ε)dk

)
·
(

(1− ε)dk
n

)dk
. (7.6)

By demanding that for every 1 ≤ k ≤ kmax, Equation (7.6) is bounded above by 4−k, we
obtain a bound of

∑kmax

k=1 4−k < 1
3

on the probability that G is not a (kmax, 1−ε)-bipartite

expander. Since for every a, b ∈ N it holds that
(
a
b

)
≤
(
ea
b

)b
, it is enough to require that

m ≤ k

4e
· e−d ·

(n
dk

)εd
181

7. ON RIGID MATRICES AND U-POLYNOMIALS

for all 1 ≤ k ≤ kmax. Since ε > 1/d, the right hand side in the equation above decreases
as k increases, and thus it is enough to require

m ≤ kmax

4e
· e−d ·

(
n

dkmax

)εd
.

The proof then follows by the assumption kmax < e−2/ε · n
d
.

As mentioned, the state of the art explicit construction for unbalanced expanders is
due to [GUV09], given by the following theorem.

Theorem 7.8 ([GUV09]). Let α > 0 and ε < 1 be any constants. Let n, d be large

enough integers. For any kmax ≤
(
n
d2

)1/(1+α)
there exists an explicit construction of a

(kmax, 1− ε)-bipartite expander with m = exp
(
dα/(1+α)

log kmax

)
.

Unfortunately, the explicit construction in Section 7.8 falls short from achieving the
parameters of the probabilistic construction presented in Fact 7.12.

We are now ready to prove Theorem 7.4.

Proof of Theorem 7.4. By Fact 7.11, we have that G is a (kmax, 1/3)-unique neighbor
expander. Let U ⊆ Fn2 be a subspace of dimension k. Assume for contradiction that for
every c ∈ C there exists uc ∈ U such that |c + uc| ≤ d. In case there is more than one
element in U that is of distance at most d from c, we choose one such element arbitrarily.
Define U ′ = {uc : c ∈ C}.

Claim 7.12.1. |U ′| = |C| = m

Proof. Let c, c′ be two distinct elements in C. To prove the claim it is enough to show
that uc 6= uc′ . Assume for contradiction that uc = uc′ . Then, by the triangle inequality,

|c+ c′| ≤ |c+ uc|+ |c′ + uc′ |+ |uc + uc′ | ≤ 2d. (7.7)

On the other hand, G is a (kmax, 1/3)-unique neighbor expander. Hence,

|c+ c′| ≥ 1

3
· 4d · 2 > 2d,

contradicting Claim 7.7.

Define

U ′′ =

{
t∑
i=1

ui

∣∣∣∣ t ∈ [kmax/2] and u1, . . . , ut ∈ U ′
}
.

Claim 7.12.2.

|U ′′| =
kmax/2∑
i=0

(
m

i

)
.

182

7.5 Rigid Sets from Unbalanced Expanders

Before proving Claim 7.12.2 we note that it completes the proof of Theorem 7.4.
Indeed, on one hand U ′′ ⊆ U , and so |U ′′| ≤ |U |. On the other hand, by Claim 7.12.2
and by the assumption of Theorem 7.4, |U ′′| > |U |.

Proof of Claim 7.12.2. We first note that it is enough to prove that for every ∅ 6= S ⊆ U ′′

with size at most kmax, it holds that ∑
u∈S

u 6= 0. (7.8)

Indeed, assume that there exist two distinct subsetsR, T ⊆ U ′′ such thatR = {u1, . . . , ur},
T = {v1, . . . , vt}, and r, t ≤ kmax/2. If

r∑
i=1

ui =
t∑

j=1

vj,

then the symmetric difference of R, T is a non-empty set of size at most kmax such that
the sum of its elements is 0, contradicting Equation (7.8). As in Claim 7.12.1, assume by
contradiction that there exists a set S as above for which Equation (7.8) does not hold.
Then, by the triangle inequality,∣∣∣∣∣∑

u∈S

cu

∣∣∣∣∣ ≤∑
u∈S

|u+ cu|+

∣∣∣∣∣∑
u∈S

u

∣∣∣∣∣ ≤ d · |S|. (7.9)

On the other hand, since G is (kmax, 1/3) unique-neighbor expander,∣∣∣∣∣∑
u∈S

cu

∣∣∣∣∣ ≥ 1

3
· 4d · |S| > d · |S|,

contradicting Equation (7.9).

This completes the proof of Theorem 7.4.

How small are the rigid sets obtained by Theorem 7.4? By Fact 7.12, there exists a
(kmax, 2/3)-unbalanced expander with kmax = Ω(n/d), left-degree 4d and m = Θ(kmax ·
e4d). By Theorem 7.4, such bipartite expander induces an (n, k, d)-rigid set with size m,

given that
(

m
kmax/2

)
> 2k. For this inequality to hold, it is enough to have

(
m

kmax/2

)kmax/2

=

Θ(e2d·kmax) > 2k. As kmax = Ω(n/d), the latter holds for any k < c · n, for some absolute
constant c. That is, one gets an (n,Ω(n), d)-rigid set with size n · exp(d). For general
k, one can obtain an (n, k, d)-rigid set with size n · exp(d · k/n) by considering only
kmax · exp(d · k/n) of the left vertices of the expander.

This construction however is not explicit. Plugging the unbalanced expanders of [GUV09]
(see Section 7.8) only gives (n, k, d)-rigid sets with size m = n · exp

(
k · (d2/n)1/(1+α)

)
, for

any constant α > 0. By considering α→ 0, one can see the quadratic lose in the distance
parameter, d.

183

7. ON RIGID MATRICES AND U-POLYNOMIALS

7.6 From General Dimension k to Dimension n/2

In this section we discuss the problem of constructing (n, k, d)-rigid sets for an arbitrary
k. A natural approach would be to reduce this problem to the problem of constructing
(n, n/2, d′)-rigid sets. However, it is not clear whether or not there exists such a reduction.
More formally, it is not clear how can one use a poly(n)-time algorithm that is given n, d
as inputs and computes an (n, n/2, d)-rigid set in Fn2 to devise a poly(n)-time algorithm
that given n, k, d as inputs, where k < n/2, computes an (n, k, d)-rigid set with small
size. However, it turns out that for strong rigid sets such a reduction exists. This is the
statement of the following lemma.

Lemma 7.13. Assume that there exists an algorithm A that given inputs n, d, runs in
poly(n)-time and computes a strong (n, n/2, d)-rigid set with size m = m(n, d). Then,
there exists an algorithm A′ that given n, k, d as inputs, such that k ≤ n/2, runs in
poly(n)-time and computes a strong (n, k, d)-rigid set with size m(2k, d · 2k/n).

Proof. The algorithm A′ works as follows. A′ makes a call to A on input 2k, d · 2k/n to
compute a strong (2k, k, d · 2k/n)-rigid set S. The output of A′ is the set

S ′ =

s ◦ s · · · ◦ s︸ ︷︷ ︸
n/2k copies

: s ∈ S

 ,

where ◦ denotes string concatenation. Note that |S ′| = |S| = m(2k, d·2k/n) as stated. We
now show that S ′ is a strong (n, k, d)-rigid set. Let U ⊆ Fn2 be a subspace of dimension
k. Partition the set of indices [n] into n/2k consecutive blocks of size 2k each. For
i ∈ [n/2k] denote by U |i the projection of U on the ith block. Note that for every
i ∈ [n/2k], U |i ⊆ F2k

2 is a subspace of dimension at most k. For s ∈ S let us ∈ U be a
closest vector in U to s ◦ · · · ◦ s, namely,

distH(s ◦ · · · ◦ s, U) = |s ◦ · · · ◦ s+ us|.

For i ∈ [n/2k], let us|i be the projection of us to the ith block. Then,

distH(s ◦ · · · ◦ s, U) =

n/2k∑
i=1

∣∣us|i + s
∣∣ ≥ n/2k∑

i=1

distH(s, U |i).

Thus, by linearity of expectation

Es′∼S′ [distH(s′, U)] = Es∼S [distH(s ◦ · · · ◦ s, U)]

≥ Es∼S

n/2k∑
i=1

distH(s, U |i)


=

n/2k∑
i=1

Es∼S [distH(s, U |i)]

≥ n

2k
· 2kd

n
= d.

184

7.6 From General Dimension k to Dimension n/2

Theorem 7.3 together with Lemma 7.13 yield the following corollary.

Corollary 7.9. Let n, k, d be such that k ≤ n/2 and d ≤ c · n for some suitable constant
0 < c < 1. Then there exists an explicit construction of an (n, k, d)-strong rigid set with
size n · exp(d · k/n).

In fact, one can generalize each of the proofs we gave for Theorem 7.3 to show that
an exp(−d · k/n)-biased set is an (n, k, d)-strong rigid set. Nevertheless, the reduction
in Lemma 7.13 might be of use in the construction of (n, k, d)-strong rigid sets from
arbitrary (n, n/2, d)-rigid sets.

185

186

Chapter 8

Gradual small-bias sample spaces

8.1 Introduction

An ε-biased sample space S over {0, 1}n is a sample space with the following property:
for every ∅ 6= T ⊆ [n], the random variable sT , ⊕i∈T si, where s is sampled from S,
has bias at most ε (see also Section 2.4). In other words, a sample space is ε-biased if it
ε-fools every nontrivial linear test. When it is not desired or not important to specify ε,
one usually refers to such a sample space as a small-bias sample space.

The notion of a small-bias sample space was introduced in the seminal paper of Naor
and Naor [NN93] and has become a fundamental notion in theoretical computer science,
with a variety of applications.

Several explicit constructions of small-bias sample spaces that attempt to minimize the
sample space size in terms of n and ε are known [AGHP92, ABN+92, NN93, BT09]. These
constructions give incomparable sizes. Unfortunately, all known constructions fall short
from achieving sample spaces of size O(n/ε2), which are guaranteed to exist by a simple
probabilistic argument. Another research direction, which this work falls into, studies
variations and generalizations of small-bias sample spaces [AIK+90, RSW93, EGL+92,
AM95, MST06, Shp06].

A relaxation of the notion of a small-bias sample space requires only that small linear
tests will be fooled. Formally, a (k, ε)-biased sample space is a sample space S over {0, 1}n
such that for every ∅ 6= T ⊆ [n] of size at most k, the random variable sT has bias at
most ε, where again s is sampled from S. The advantage of this relaxed notion is that
fooling only small tests, rather than every nontrivial test, can be achieved by much smaller
sample spaces. The original motivation for studying (k, ε)-biased sample spaces was to
obtain almost k-wise independent random variables. However, (k, ε)-biased sample spaces
had proved to be useful in their own right, and found several applications, especially for
constructing randomness extractors [SZ94, Raz05, GRS06, CRS12] (see Chapter 3).

Naor and Naor [NN93] explicitly constructed (k, ε)-biased sample spaces with seed
that is exponentially smaller in terms of n than what is possible for ε-biased sample
spaces. They showed that O(log k+log log n+log ε−1) random bits are sufficient in order
to fool tests of size k, while it is known that a seed of length Ω(log n+log ε−1) is necessary

187

8. GRADUAL SMALL-BIAS SAMPLE SPACES

in order to fool every nontrivial linear test (see, e.g, [AGHP92, Alo09]).

Gradual small-bias sample spaces Consider two pairs (k1, ε1) and (k2, ε2) such that

s = log k1 + log ε−1
1 = log k2 + log ε−1

2 .

Potentially, one could hope that a seed of length O(s + log log n) would be sufficient to
ε1-fool tests of size k1 and simultaneously to ε2-fool tests of size k2. In other words, we
are considering a (k, ε)-biased sample space that has the following property: for tests of
size t < k, the “spare” log k− log t bits of the seed are utilized to reduce the bias. In this
paper we initiate the study of such sample spaces, which have a better bound on the bias
for smaller tests.

Definition 8.1. A sample space S over {0, 1}n is called gradual (k, ε)-biased if for every
∅ 6= T ⊆ [n] of size at most k,∣∣∣Es∼S [(−1)

∑
i∈T si

] ∣∣∣ ≤ ε · |T |
k
.

A few words about the definition are in order. First, note that when T is of size
exactly k, the bound on the bias is ε, i.e., a gradual (k, ε)-biased sample space is, in
particular, (k, ε)-biased. On the other hand, a (k, ε/k)-biased sample space is a gradual
(k, ε)-biased sample space.

One may consider a more general definition, which allows an arbitrary decaying func-
tion φ : N→ [0, 1] as the bound on the bias (say, φ(|T |) = ε · (|T |/k)d for some parameter
d). We choose this function to be ε · |T |/k in the definition and discuss a more general
definition in Section 8.4.

8.1.1 Main Result

Theorem 8.1. For any integers n and k ≤ n, for any ε > 0, and for any constant δ > 0
1 there exists an explicit construction of a gradual (k, ε) sample space of size

m = Oδ

((
k

ε

)2+δ

+

(
log n

log k

)2+4/δ

k1+δ

)
,

where the Oδ hides a multiplicative constant that depends only on δ.

Obviously, one can find a value for δ that minimizes m as a function of n, k and ε.
However, when no assumptions are made on the relations between n, k and ε, the ex-
pression one would get is cumbersome and non-informative. Moreover, when conducting
such minimization one can no longer ignore the multiplicative dependency in δ that is
hidden under the big Oδ notation. We therefore choose to specify our bound in the more
readable way presented above.

1In fact, the construction works without assuming δ is constant, and this assumption appears only to
simplify the presentation of the theorem. See Theorem 8.4 for a more general statement.

188

8.2 Previous Results Used By the Construction

8.2 Previous Results Used By the Construction

8.2.1 Quadratic Characters

We denote by χq the quadratic character over Fq. Namely, χq(0) = 0 and for all 0 6=
x ∈ Fq, χq(x) = 1 if ∃y ∈ Fq \ {0} such that x = y2, and χq(x) = −1 otherwise. When
the field is understood from the context, we omit the subscript and simply denote this
character by χ. We use a special case of Weil’s Theorem regarding character sums (see
e.g., [Sch76]).

Theorem 8.2 (Weil’s Theorem). Let q be an odd prime power. Let f ∈ Fq[x] be a
degree d polynomial. Assume that f(x) 6= c · g(x)2 for any c ∈ Fq, g ∈ Fq[x]. Then,∣∣∣∑x∈Fq χ(f(x))

∣∣∣ ≤ (d− 1)
√
q.

8.2.2 Expanders and Codes

We associate a bipartite graph G = (L,R,E) with |L| left-vertices, |R| right-vertices and
left-degree d with the adjacency function G : L× [d]→ R, where G(x, i) = y if and only
if y is the ith neighbor of x. For a set of left-vertices A ⊆ L we denote by G(A) the set
of neighbors of A.

Definition 8.2. A bipartite graph G : L× [d]→ R is a k-unique-neighbor expander if for
any nonempty subset A ⊆ L of size at most k, there exists some y ∈ R that is adjacent
to exactly one vertex in A.

Definition 8.3. A bipartite graph G : L × [d] → R is a (≤ k, α) expander if for any
subset A ⊆ L of size at most k, |G(A)| ≥ α · |A|.

We will need the well-known fact that a graph whose expansion is greater than half
of the degree is also a unique-neighbor expander.

Fact 8.4. If G : L× [d] → R is a (≤ k, α) expander for α > d/2 then G is a k-unique-
neighbor expander.

We will make use of the following expanders, constructed by [GUV09]. We remark
that these expanders are related to the extractors mentioned in Section 2.

Theorem 8.3 ([GUV09, Theorem 3.2]). Let q be a prime power.2 For every integers
`, r, h ≥ 1 there exists an explicit construction of a graph G : [q`] × [q] → [qr+1] which
is an (≤ hr, q − (` − 1)(h − 1)r) expander. In particular, G is an hr-unique-neighbor
expander when q > (`− 1)(h− 1)r/2.

2For this construction to be explicit, the characteristic of Fq should be small. In our construction we
take it to be 3.

189

8. GRADUAL SMALL-BIAS SAMPLE SPACES

8.3 The Construction

In this section we describe our construction of a gradual (k, ε)-biased sample space, and
prove Theorem 8.1. Let r ≥ 2 be an integer. Let q be an odd prime power to be
determined later. Set ` = d logn

log q
e. For the construction, we assume that we have a

bipartite graph G = (L,R,E) which is a k-unique-neighbor expander with |L| = q`,
|R| = qr+1, and left-degree q. By our choice of ` we have |L| ≥ n. Fix an arbitrary subset
L′ of L such that |L′| = n. Set m = qr+1 and identify R with the finite field Fm. For
every vertex v ∈ L′ define the polynomial pv(x) ∈ Fm[x] by pv(x) =

∏
w : (v,w)∈E (x− w).

We now describe the sample space S over {0, 1}n. 3 Each element in S corresponds
to a field element in Fm, that is, S = {sx : x ∈ Fm}. The string sx is indexed by elements
from the set L′. In particular, for every x ∈ Fm and v ∈ L′, we define

(sx)v =


1− χm (pv(x))

2
, pv(x) 6= 0;

0, otherwise.
(8.1)

The following theorem readily implies Theorem 8.1 by setting δ = 4/(r − 1).

Theorem 8.4. For every integers n, k, r such that n ≥ k and r ≥ 2, and for any ε > 0,
one can (efficiently) find a value for q such that the construction defined above is an
explicit gradual (k, ε) sample space over {0, 1}n with size

m ≤ max

{
(10r2)r+1

(
log n

log k

)r+1

k1+1/r, 3r+1

(
2k

ε

)2+4/(r−1)
}
.

To prove Theorem 8.4 we prove the following two claims.

Claim 8.4.1. If q ≥ (2k/ε)2/(r−1) then the sample space defined above is gradual (k, ε)-
biased.

Claim 8.4.2. If q ≥ 3.3 · logn
log k
· k1/rr2, then we have an explicit construction of the k-

unique-neighbor expander graph G = (L,R,E) required by the above construction.

Before proving the two claims we derive Theorem 8.4 from them. By choosing

q ≥ max

{
3.3 · log n

log k
· k1/rr2,

(
2k

ε

)2/(r−1)
}
, (8.2)

Claim 8.4.2 assures us that we can obtain the graph G that we need in the construction.
Having this graph, Claim 8.4.1 guarantees that the above sample space is gradual (k, ε)-
biased. Certainly one can efficiently find a choice for q = 3z which is at most three times

3In fact, we define S as a multi-set. The sample space is induced in the natural way, namely, to sample
from the sample space, one sample an element s ∈ S with probability proportional to the multiplicity of
s in S.

190

8.3 The Construction

the right hand side of Equation (8.2). 4 As m = qr+1 we get the following upper bound
on m, the sample space size

m ≤ max

{
(10r2)r+1

(
log n

log k

)r+1

k1+1/r, 3r+1

(
2k

ε

)2+4/(r−1)
}
,

hence Theorem 8.4 follows.

Proof of Claim 8.4.1. Let ∅ 6= T ⊆ L′, |T | ≤ k. Define pT (x) =
∏

v∈T pv(x). Since
pT (x) is defined as a product of |T | polynomials, each of degree at most q, we have that
deg (pT (x)) ≤ q · |T |. Moreover, we claim that pT (x) has a simple root. Indeed, T is a
nonempty set of size at most k of L′ ⊆ L. By our assumption, G is a k-unique-neighbor
expander, and so there exists a vertex w ∈ R with exactly one neighbor, v, in T . This
implies that w is a simple root of pv(x), while for every u ∈ T\{v}, pu(w) 6= 0. Hence, by
the definition of pT (x) we have that w is a simple root of pT (x). Now, up to normalization,
the bias of the linear test defined by T is∑

x∈Fm

(−1)
∑
v∈T (sx)v =

∑
x∈Fm

∏
v∈T

(−1)(sx)v . (8.3)

Suppose x is not a root of pT (x). Then, the value that such an x contributes to the sum
in Equation (8.3) is

∏
v∈T

(−1)(sx)v =
∏
v∈T

χm(pv(x)) = χm

(∏
v∈T

pv(x)

)
= χm(pT (x)),

where the middle equality follows from the fact that χ is a multiplicative homomorphism.
As pT (x) has at most deg (pT) ≤ q · |T | roots, we have that

∣∣∑
x∈Fm (−1)

∑
v∈T (sx)v

∣∣ ≤∣∣∑
x∈Fm χm(pT (x))

∣∣+q ·|T |. Since pT (x) has a simple root, pT (x) is not of the form c·g(x)2

for any c ∈ Fm and g ∈ Fm[x]. Therefore, we can apply Weil’s Theorem (Theorem 8.2)
to get

∣∣∑
x∈Fm χm(pT (x))

∣∣ < q · |T | ·
√
m. Hence,

1

m

∣∣∣∣∣∑
x∈Fm

(−1)
∑
v∈T (sx)v

∣∣∣∣∣ ≤ 2q · |T |√
m

= 2|T | · q(1−r)/2.

To get a bound of at most ε on the bias for tests of size exactly k, we require that

2k · q(1−r)/2 ≤ ε, or q ≥
(

2k
ε

)2/(r−1)
.

Proof of Claim 8.4.2. We use the expanders from Theorem 8.3 with h = dk1/re. If q −
(`− 1)(h− 1)r ≥ 0.51q then G is a k-unique-neighbor expander. By the definition of `,
for the above equation to hold, it is enough to require q log q ≥ 2.05 · log n · k1/rr, which
holds for any q ≥ 3.28 · logn

log k
· k1/rr2.

4Observe also that this solves the minor issue regarding the need for small characteristic for the
explicitness requirements of Theorem 8.3.

191

8. GRADUAL SMALL-BIAS SAMPLE SPACES

8.4 Non-Linear Bias Decay

The definition of a gradual (k, ε)-biased sample space that appears in the introduction
requires a bound of the form ε · |T |/k on the bias for any nonempty set T of size at most
k. The construction we suggest in this paper indeed has such linear decay. However, one
may consider a more general definition where the decay exponent is a non-negative real
parameter d.

Definition 8.5. A sample space S over {0, 1}n is called gradual (k, d, ε)-biased if for
every ∅ 6= T ⊆ [n] of size at most k,∣∣∣Es∼S [(−1)

∑
i∈T si

] ∣∣∣ ≤ ε ·
(
|T |
k

)d
.

We call d the decay exponent.

A straightforward probabilistic argument shows that a random sample space S over
{0, 1}n of size m = O(k2d · ε−2 · log n) is, with high probability, a (k, d, ε)-biased sample
space. We start this section by proving an almost matching lower bound on the size of
(k, d, ε)-biased sample spaces (Theorem 8.6 below). We then turn to present two simple
methods that transform a gradual (k, d, ε)-biased sample space to a gradual (k, d′, ε)-
biased sample space for d′ > d. These methods, together with the construction for the
case d = 1 (Theorem 8.1) yields constructions with larger decay exponents (Corollary 8.7).

8.4.1 A Lower Bound

To prove a lower bound on the size of a gradual small-bias sample space, we use the
following known lower bound on the size of (non-gradual) (k, ε)-biased sample spaces.

Theorem 8.5 ([AAK+07, Alo09]). Let S be a (k, ε)-biased sample space over {0, 1}n of

size m. If ε ≥
(
n
k/2

)−1/2
then m ≥ Ω

(
k log (n/k)
ε2·log 1/ε

)
.

We now state and prove a lower bound for the size of gradual (k, d, ε) sample spaces.

Theorem 8.6. Let S be a gradual (k, d, ε)-biased sample space over {0, 1}n of size m. If
d ≤ k/ log k and ε > (d log k/n)O(d log k) then

m ≥ Ω

(
log n

ε2 · log 1/ε
·
(

k

d · log k

)2d
)
.

Proof. Let S be a gradual (k, d, ε)-biased sample space over {0, 1}n of size m. Then, in

particular, S is a (k′, ε′)-biased sample space with k′ = d log k and ε′ = ε ·
(
d·log k
k

)d
. As

ε′ ≥
(
n
k′/2

)−1/2
we can use Theorem 8.5 to deduce that

m ≥ Ω

(
k′ log (n/k′)

(ε′)2 · log 1/ε′

)
≥ Ω

(k

d · log k

)2d

· 1

ε2 · log (1/ε)
·

log k · log
(

n
d log k

)
log
(

k
d log k

)
 .

192

8.4 Non-Linear Bias Decay

Since we assume that d ≤ k/ log k, and since k ≤ n, we have that

log k · log
(

n
d log k

)
log
(

k
d log k

) ≥ log n,

thus we have the desired lower bound on m.

8.4.2 Amplifying the Decay Exponent

To amplify the decay exponent, we note that every gradual (k, d, ε/k)-biased sample space
S on n variables is a gradual (k, d+ 1, ε)-biased sample space on n variables. Indeed, for
every nonempty T ⊆ [n] of size at most k,∣∣∣Es∼S [(−1)

∑
i∈T si

] ∣∣∣ ≤ ε

k
·
(
|T |
k

)d
≤ ε ·

(
|T |
k

)d+1

.

That is, choosing a smaller error to begin with, will result in a larger decay exponent.
This observation, together with Theorem 8.1 immediately implies the following corollary.

Corollary 8.7. For any integers n, k, d, such that k ≤ n, for any ε > 0, and for any
constant δ > 0, there exists an explicit construction of a gradual (k, d, ε) sample space of
size

m = Oδ

((
kd

ε

)2+δ

+

(
log n

log k

)2+4/δ

k1+δ

)
.

Another method for amplifying the decay exponent, which is more suitable than the
above in cases where the original gradual sample space has bad dependency in ε, is based
on the following observation. Let S be a gradual (k, d,

√
ε)-biased sample space. Then

S + S 5 is a gradual (k, 2d, ε)-biased sample space. This follows because

∣∣∣Es∼S+S

[
(−1)

∑
i∈T si

] ∣∣∣ =
(
Es∼S

[
(−1)

∑
i∈T si

])2 ≤

(
√
ε ·
(
|T |
k

)d)2

= ε ·
(
|T |
k

)2d

.

5The sample space S+S is defined by sampling s1 and s2, independently, from S and then outputting
s1 + s2, where the addition is a bitwise addition over F2.

193

194

Bibliography

[AAK+07] N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie.
Testing k-wise and almost k-wise independence. In Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing, pages 496–505.
ACM, 2007.

[Aar10] S. Aaronson. BQP and the Polynomial Hierarchy. In Proceedings of the 42nd
ACM symposium on Theory of computing, pages 141–150. ACM, 2010.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptot-
ically good low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on Information Theory, 38:509–516, 1992.

[AC88] N. Alon and F.R.K. Chung. Explicit construction of linear sized tolerant
networks. Discrete Mathematics, 72(1):15–19, 1988.

[AC13] N. Alon and G. Cohen. On rigid matrices and U-polynomials. In Conference
on Computational Complexity (CCC), 2013 IEEE, pages 197–206. IEEE,
2013.

[AGHP92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple construction
of almost k-wise independent random variables. Random Structures and
Algorithms, 3(3):289–304, 1992.

[AIK+90] M. Ajtai, H. Iwaniec, J. Komlos, J. Pintz, and E. Szemeredi. Construction of
a thin set with small fourier coefficients. Bulletin of the London Mathematical
Society, 22:583–590, 1990.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting
network. In STOC, pages 1–9, 1983.

[Alo09] N. Alon. Perturbed identity matrices have high rank: proof and applications.
Combinatorics, Probability and Computing, 18(1-2):3–15, 2009.

195

8. BIBLIOGRAPHY

[AM95] N. Alon and Y. Mansour. epsilon-discrepancy sets and their application
for interpolation of sparse polynomials. Information Processing Letters,
54(6):337–342, 1995.

[APY09] N. Alon, R. Panigrahy, and S. Yekhanin. Deterministic approximation al-
gorithms for the nearest codeword problem. In APPROX-RANDOM, pages
339–351, 2009.

[AR63] S. Akers and T. Robbins. Logical design with three-input majority gates.
Computer Design, 45(3):12–27, 1963.

[AR94] N. Alon and Y. Roichman. Random cayley graphs and expanders. Random
Structures and Algorithms, 5(2):271–285, 1994.

[AS10] V. Arvind and S. Srinivasan. The remote point problem, small bias spaces,
and expanding generator sets. In 27th STACS, pages 59–70, 2010.

[BAC12] Avraham Ben-Aroya and Gil Cohen. Gradual small-bias sample spaces. In
Electronic Colloquium on Computational Complexity (ECCC), volume 19,
page 50, 2012.

[BBCM95] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer. Generalized pri-
vacy amplification. IEEE Transactions on Information Theory, 41(6):1915–
1923, 1995.

[BBR85] C. H. Bennett, G. Brassard, and J. M. Robert. How to reduce your enemys
information. In Advances in Cryptology (CRYPTO), volume 218, pages 468–
476. Springer, 1985.

[BBR88] C. H. Bennett, G. Brassard, and J. M. Robert. Privacy amplification by
public discussion. SIAM J. Comput., 17(2):210–229, 1988.

[BCS14] I. Benjamini, G. Cohen, and I. Shinkar. Bi-lipschitz bijection between the
Boolean cube and the Hamming ball. In IEEE 55th Annual Symposium on
Foundations of Computer Science (FOCS), pages 81–89. IEEE, 2014.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In STOC, pages 1–10, 1988.

[BIW10] O. Barkol, Y. Ishai, and E. Weinreb. On locally decodable codes, self-
correctable codes, and t-private PIR. Algorithmica, 58(4):831–859, 2010.

[BKS+05] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating
independence: New constructions of condensers, Ramsey graphs, dispersers,
and extractors. In Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pages 1–10. ACM, 2005.

196

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[Bop97] R. Boppana. The average sensitivity of bounded-depth circuits. Information
Processing Letters, 63(5):257–261, 1997.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its
applications. International Journal of Number Theory, 1(01):1–32, 2005.

[Bra87] Gabriel Bracha. An O(log n) expected rounds randomized byzantine generals
protocol. J. ACM, 34(4):910–920, 1987.

[BRSW12] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for
no(1) entropy, and Ramsey graphs beating the Frankl-Wilson construction.
Annals of Mathematics, 176(3):1483–1544, 2012.

[BSK12] E. Ben-Sasson and S. Kopparty. Affine dispersers from subspace polynomials.
SIAM Journal on Computing, 41(4):880–914, 2012.

[BT09] A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-
geometric codes. In Proceedings of the 50th annual IEEE symposium on
foundations of computer science (FOCS), 2009.

[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branch-
ing programs. In Foundations of Computer Science (FOCS), 2010 51st An-
nual IEEE Symposium on, pages 30–39. IEEE, 2010.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic proto-
cols. J. Cryptology, 13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[CDI+13] G. Cohen, I. B. Damg̊ard, Y. Ishai, J. Kölker, P. B. Miltersen, R. Raz,
and R. D. Rothblum. Efficient multiparty protocols via log-depth thresh-
old formulae. In Advances in Cryptology – CRYPTO 2013, pages 185–202.
Springer, 2013.

[CDN12] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing - An Information Theoretic Appoach. 2012.
Book draft, available at http://www.daimi.au.dk/∼ivan/MPCbook.pdf.

[CFF+05] Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin, Leonid A. Levin,
Ueli M. Maurer, and David Metcalf. Byzantine agreement given partial
broadcast. J. Cryptology, 18(3):191–217, 2005.

197

8. BIBLIOGRAPHY

[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient
multi-party computation over rings. In EUROCRYPT, pages 596–613, 2003.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[CGH+85] B. Chor, O. Goldreich, J. H̊astad, J. Freidmann, S. Rudich, and R. Smolen-
sky. The bit extraction problem or t-resilient functions. In Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pages
396–407. IEEE, 1985.

[CGR14] G. Cohen, A. Ganor, and R. Raz. Two sides of the coin problem. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 618–629, 2014.

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty compu-
tations secure unconditionally from minorities and cryptographically from
majorities. In CRYPTO, pages 591–602, 1989.

[CKK+13] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Min-
ing circuit lower bound proofs for meta-algorithms. In Electronic Colloquium
on Computational Complexity (ECCC), volume 20, page 57, 2013.

[CKOR10] N. Chandran, B. Kanukurthi, R. Ostrovsky, and L. Reyzin. Privacy amplifi-
cation with asymptotically optimal entropy loss. In Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing, pages 785–794, 2010.

[Coh15] G. Cohen. Local correlation breakers and applications to three-source extrac-
tors and mergers. In Electronic Colloquium on Computational Complexity
(ECCC), volume 38, 2015.

[CRS12] G. Cohen, R. Raz, and G. Segev. Non-malleable extractors with short seeds
and applications to privacy amplification. In Computational Complexity
(CCC), 2012 IEEE 27th Annual Conference on, pages 298–308. IEEE, 2012.

[CRS14] G. Cohen, R. Raz, and G. Segev. Nonmalleable extractors with short seeds
and applications to privacy amplification. SIAM Journal on Computing,
43(2):450–476, 2014.

[CS14] G. Cohen and I. Shinkar. The complexity of DNF of parities. In Electronic
Colloquium on Computational Complexity (ECCC), volume 21, page 99,
2014.

[CS15] G. Cohen and I. Shinkar. Zero-fixing extractors for sub-logarithmic entropy.
In The 42nd International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), 2015.

198

[CT14] G. Cohen and A. Tal. Two structural results for low degree polynomials and
applications. arXiv preprint arXiv:1404.0654, 2014.

[DIK+08] Ivan Damg̊ard, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and
Adam Smith. Scalable multiparty computation with nearly optimal work
and resilience. In CRYPTO, pages 241–261, 2008.

[DKRS06] Y. Dodis, J. Katz, L. Reyzin, and A. Smith. Robust fuzzy extractors and
authenticated key agreement from close secrets. In Advance in Cryptology –
CRYPTO ’06, pages 232–250, 2006.

[DKSS09] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan. Extensions to the method
of multiplicities, with applications to Kakeya sets and mergers. In 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 181–
190. IEEE, 2009.

[DLWZ11a] Y. Dodis, X. Li, T. D. Wooley, and D. Zuckerman. Non-malleable extrac-
tors via character sums. In Proceedings of the 52th Annual Symposium on
Foundations of Computer Science (FOCS), 2011.

[DLWZ11b] Y. Dodis, X. Li, T. D. Wooley, and D. Zuckerman. Privacy amplification
and non-malleable extractors via character sums, 2011. http://arxiv.org/
abs/1102.5415.

[DLWZ11c] Y. Dodis, X. Li, T. D. Wooley, and D. Zuckerman. Privacy amplification and
non-malleable extractors via character sums. In Proceedings of the 52th An-
nual Symposium on Foundations of Computer Science (FOCS), pages 668–
677. IEEE, 2011.

[Dol82] Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30,
1982.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal
on Computing, 38(1):97–139, 2008.

[DP07] S. Dziembowski and K. Pietrzak. Intrusion-resilient secret sharing. In 48th
Annual IEEE Symposium on Foundations of Computer Science, pages 227–
237, 2007.

[DPS12a] Yvo Desmedt, Josef Pieprzyk, and Ron Steinfeld. Active security in multi-
party computation over black-box groups. In SCN, pages 503–521, 2012.

[DPS+12b] Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, Xiaoming Sun, Christophe
Tartary, Huaxiong Wang, and Andrew Chi-Chih Yao. Graph coloring applied
to secure computation in non-abelian groups. J. Cryptology, 25(4):557–600,
2012.

199

http://arxiv.org/abs/1102.5415
http://arxiv.org/abs/1102.5415

8. BIBLIOGRAPHY

[DPSW07] Yvo Desmedt, Josef Pieprzyk, Ron Steinfeld, and Huaxiong Wang. On secure
multi-party computation in black-box groups. In CRYPTO, pages 591–612,
2007.

[DR08] Z. Dvir and R. Raz. Analyzing linear mergers. Random Structures & Algo-
rithms, 32(3):334–345, 2008.

[DS07] Z. Dvir and A. Shpilka. An improved analysis of linear mergers. computa-
tional complexity, 16(1):34–59, 2007.

[Dvi10] Z. Dvir. On matrix rigidity and locally self-correctable codes. In Proceedings
of the 25th Annual CCC, pages 291–298, 2010.

[Dvi12] Z. Dvir. Extractors for varieties. computational complexity, 21(4):515–572,
2012.

[DW09] Y. Dodis and D. Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, pages 601–610, 2009.

[DW11] Z. Dvir and A. Wigderson. Kakeya sets, new mergers, and old extractors.
SIAM Journal on Computing, 40(3):778–792, 2011.

[DY13] Y. Dodis and Y. Yu. Overcoming weak expectations. In Theory of Cryptog-
raphy, pages 1–22. Springer, 2013.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized proto-
col for signing contracts. CACM: Communications of the ACM, 28, 1985.

[EGL+92] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic. Approxima-
tions of general independent distributions. In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing, pages 10–16, 1992.

[EL75] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs
and some related questions. Infinite and finite sets, 10:609–627, 1975.

[ER52] P. Erdős and R. Rado. Combinatorial theorems on classifications of subsets
of a given set. Proceedings of the London Mathematical Society, 3(2):417–439,
1952.

[Erd47] P. Erdös. Some remarks on the theory of graphs. Bulletin of the American
Mathematical Society, 53(4):292–294, 1947.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure com-
putation (extended abstract). In STOC, pages 554–563, 1994.

[FM98] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure
against general adversaries. In DISC, pages 134–148, 1998.

200

[FM00] Matthias Fitzi and Ueli M. Maurer. From partial consistency to global
broadcast. In STOC, pages 494–503, 2000.

[Fri92] J. Friedman. On the bit extraction problem. In Proceedings of the 33rd
Annual Symposium on Foundations of Computer Science, pages 314–319.
IEEE, 1992.

[Fri93] J. Friedman. A note on matrix rigidity. Combinatorica, 13(2):235–239, 1993.

[GM96] A. Gupta and S. Mahajan. Using amplification to compute majority with
small majority gates. Computational Complexity, 6(1):46–63, 1996.

[GM98] J. A. Garay and Y. Moses. Fully polynomial byzantine agreement for n > 3t
processors in t+ 1 rounds. SIAM J. Comput., 27(1):247–290, 1998.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In STOC,
pages 218–229. ACM, 1987.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applica-
tions. Cambridge University Press, New York, NY, USA, 2004.

[Gol08] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, 2008.

[Gol11a] Oded Goldreich. A sample of samplers: A computational perspective on
sampling. In Oded Goldreich, editor, Studies in Complexity and Cryptog-
raphy, volume 6650 of Lecture Notes in Computer Science, pages 302–332.
Springer, 2011.

[Gol11b] Oded Goldreich. Valiant’s polynomial-size monotone formula for majority.
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf, 2011.

[GRS06] A. Gabizon, R. Raz, and R. Shaltiel. Deterministic extractors for bit-fixing
sources by obtaining an independent seed. SIAM Journal on Computing,
36(4):1072–1094, 2006.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh–Vardy codes. Journal of the ACM
(JACM), 56(4):1–34, 2009.

[HIKN08] Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. OT-
combiners via secure computation. In TCC, pages 393–411, 2008.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28:12–24, 1999.

201

http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf

8. BIBLIOGRAPHY

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applica-
tions. Bulleting of the American Mathematical Society, 43:439–561, 2006.

[HM00] M. Hirt and U. M. Maurer. Player simulation and general adversary struc-
tures in perfect multiparty computation. J. Cryptology, 13(1):31–60, 2000.

[HS10] E. Haramaty and A. Shpilka. On the structure of cubic and quartic polyno-
mials. In Proceedings of the 42nd ACM symposium on Theory of computing,
pages 331–340. ACM, 2010.

[IKOS09] Yuval Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge
proofs from secure multiparty computation. SIAM J. Comput., 39(3):1121–
1152, 2009.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from
one-way functions. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, pages 12–24, 1989.

[IN96] Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes prov-
ably as secure as subset sum. J. Cryptology, 9(4):199–216, 1996.

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 356–364. ACM, 1994.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In CRYPTO, pages 572–591, 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic com-
putation with no honest majority. In TCC, pages 294–314, 2009.

[Juk06] S. Jukna. On graph complexity. Combinatorics, Probability and Computing,
15(06):855–876, 2006.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages
20–31, 1988.

[KL08] T. Kaufman and S. Lovett. Worst case to average case reductions for poly-
nomials. In Foundations of Computer Science (FOCS), 2008 49th Annual
IEEE Symposium on, pages 166–175. IEEE, 2008.

[KLR10] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically
secure protocols and security under composition. SIAM J. Comput.,
39(5):2090–2112, 2010.

[KPS85] Richard M. Karp, N. Pippinger, and Nicholas Sipser. A time-randomness
tradeoff. In AMS Conference on Probabilistic Computational Complexity,
1985.

202

[KR98] B.S. Kashin and A.A. Razborov. Improved lower bounds on the rigidity of
Hadamard matrices. Mathematical Notes, 63(4):471–475, 1998.

[KR09] B. Kanukurthi and L. Reyzin. Key agreement from close secrets over un-
secured channels. In Advance in Cryptology – EUROCRYPT ’09, pages
206–223, 2009.

[KRT13] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for
DeMorgan formula size. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 588–597. IEEE, 2013.

[KZ06] J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing
sources and exposure-resilient cryptography. SIAM Journal on Computing,
36(5):1231–1247, 2006.

[Li11] X. Li. Improved constructions of three source extractors. In IEEE 26th
Annual Conference on Computational Complexity, pages 126–136, 2011.

[Li12a] X. Li. Design extractors, non-malleable condensers and privacy amplifica-
tion. In Proceedings of the 44th symposium on Theory of Computing, pages
837–854. ACM, 2012.

[Li12b] X. Li. Non-malleable condensers for arbitrary min-entropy, and almost op-
timal protocols for privacy amplification. arXiv preprint arXiv:1211.0651,
2012.

[Li12c] X. Li. Non-malleable extractors, two-source extractors and privacy ampli-
fication. In Proceedings of the 53rd IEEE Symposium on Foundation of
Computer Science, 2012.

[Li13] X. Li. Extractors for a constant number of independent sources with polylog-
arithmic min-entropy. In Foundations of Computer Science (FOCS), 2013
IEEE 54th Annual Symposium on, pages 100–109. IEEE, 2013.

[Li15] X. Li. Three-source extractors for polylogarithmic min-entropy. Electronic
Colloquium on Computational Complexity (ECCC), 2015.

[Lok95] S. V. Lokam. Spectral methods for matrix rigidity with applications to size-
depth tradeoffs and communication complexity. In 36th Annual FOCS, pages
6–15, 1995.

[Lok09] S. V. Lokam. Complexity lower bounds using linear algebra. Foundations
and Trends in Theoretical Computer Science, 4(1-2):1–155, 2009.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Op-
timizations, variants and concrete efficiency. In CRYPTO, pages 259–276,
2011.

203

8. BIBLIOGRAPHY

[LRM10] Christoph Lucas, Dominik Raub, and Ueli M. Maurer. Hybrid-secure
mpc: trading information-theoretic robustness for computational privacy.
In PODC, pages 219–228, 2010.

[LRVW03] C.J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up
to constant factors. In Proceedings of the thirty-fifth annual ACM Symposium
on Theory of Computing, pages 602–611. ACM, 2003.

[LV12] S. Lovett and E. Viola. Bounded-depth circuits cannot sample good codes.
Computational Complexity, 21(2):245–266, 2012.

[Mau92] U. M. Maurer. Protocols for secret key agreement by public discussion based
on common information. In Advance in Cryptology – CRYPTO ’92, pages
461–470, 1992.

[Mau97] U. M. Maurer. Information-theoretically secure secret-key agreement by
NOT authenticated public discussion. In Advance in Cryptology – EURO-
CRYPT ’97, pages 209–225, 1997.

[Mau06] Ueli M. Maurer. Secure multi-party computation made simple. Discrete
Applied Mathematics, 154(2):370–381, 2006.

[Mil92] P. B. Miltersen. Lecutre notes. Available from author, 1992.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes, Part II. North-Holland, 1977.

[MST06] E. Mossel, A. Shpilka, and L. Trevisan. On epsilon-biased generators in NC0.
Random Structures and Algorithms, 29(1):56–81, 2006.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. IACR Cryp-
tology ePrint Archive, 2013:1, 2013. To appear in STOC 2013.

[MW97] U. M. Maurer and S. Wolf. Privacy amplification secure against active ad-
versaries. In Advance in Cryptology – CRYPTO ’97, pages 307–321, 1997.

[MW03] U. M. Maurer and S. Wolf. Secret-key agreement over unauthenticated pub-
lic channels III: Privacy amplification. IEEE Transactions on Information
Theory, 49(4):839–851, 2003.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Com-
binatorica, 12(4):449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. on Computing, 22(4):838–856, 1993.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

204

[O’D] R. O’Donnell. Analyis of boolean functions. http://

analysisofbooleanfunctions.org/.

[PR04] P. Pudlák and V. Rödl. Pseudorandom sets and explicit constructions of
Ramsey graphs. Quad. Mat, 13:327–346, 2004.

[PSL80] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Harvard Aiken Computation Laboratory, 1981.

[Rao07] A. Rao. An exposition of Bourgains 2-source extractor. In Electronic Collo-
quium on Computational Complexity (ECCC), volume 14, page 034, 2007.

[Rao09a] A. Rao. Extractors for a constant number of polynomially small min-entropy
independent sources. SIAM Journal on Computing, 39(1):168–194, 2009.

[Rao09b] A. Rao. Extractors for low-weight affine sources. In Proceedings of 24th
Annual IEEE Conference on Computational Complexity, (CCC ’09), pages
95–101. IEEE, 2009.

[Raz05] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th
Annual STOC, pages 11–20, 2005.

[RBO89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In David S. Johnson,
editor, STOC, pages 73–85. ACM, 1989.

[RSW93] A. A. Razborov, E. Szemerédi, and A. Wigderson. Constructing small sets
that are uniform in arithmetic progressions. Combinatorics, Probability &
Computing, 2:513–518, 1993.

[RV13] Y. Reshef and S. Vadhan. On extractors and exposure-resilient functions for
sublogarithmic entropy. Random Structures & Algorithms, 42(3):386–401,
2013.

[RW03] R. Renner and S. Wolf. Unconditional authenticity and privacy from an
arbitrarily weak secret. In Advance in Cryptology – CRYPTO ’03, pages
78–95, 2003.

[Sch76] W. M. Schmidt. Equations over Finite Fields: An elementary approach.
Springer-Verlag, 1976.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

205

http://analysisofbooleanfunctions.org/
http://analysisofbooleanfunctions.org/

8. BIBLIOGRAPHY

[Sha11] R. Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In
Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Sym-
posium on, pages 247–256. IEEE, 2011.

[Shp06] A. Shpilka. Constructions of low-degree and error-correcting in-biased gen-
erators. In 21st Annual IEEE Conference on Computational Complexity,
pages 33–45, 2006.

[Spe77] J. Spencer. Intersection theorems for systems of sets. Canadian Math Bul-
letin, 20(2):249–254, 1977.

[SSS97] M.A. Shokrollahi, D. Spielman, and V. Stemann. A remark on matrix rigid-
ity. Information Processing Letters, 64(6):283–285, 1997.

[Ste13] J. Steinberger. The distinguishability of product distributions by read-once
branching programs. In Computational Complexity (CCC), 2013 IEEE Con-
ference on, pages 248–254. IEEE, 2013.

[SV10] R. Shaltiel and E. Viola. Hardness amplification proofs require majority.
SIAM Journal on Computing, 39(7):3122–3154, 2010.

[SYT08] Xiaoming Sun, Andrew Chi-Chih Yao, and Christophe Tartary. Graph design
for secure multiparty computation over non-abelian groups. In ASIACRYPT,
pages 37–53, 2008.

[SZ94] A. Srinivasan and D. Zuckerman. Computing with very weak random
sources. In 35th Annual Symposium on Foundations of Computer Science,
pages 264–275. IEEE, 1994.

[TS96] A. Ta-Shma. On extracting randomness from weak random sources. In Pro-
ceedings of the twenty-eighth annual ACM Symposium on Theory of Com-
puting, pages 276–285, 1996.

[Uma03] C. Umans. Pseudo-random generators for all hardnesses. J. of Computer
and System Sciences, 67(2):419–440, 2003.

[Vad11] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 2011.

[Val77] L. G. Valiant. Graph-theoretic arguments in low-level complexity. In Lecture
notes in Computer Science, volume 53, pages 162–176. Springer, 1977.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

206

[Vaz85] V. U. Vazirani. Towards a strong communication complexity theory or gen-
erating quasi-random sequences from two communicating slightly-random
sources. In Proceedings of the seventeenth annual ACM symposium on The-
ory of Computing, pages 366–378. ACM, 1985.

[Wol98] S. Wolf. Strong security against active attacks in information-theoretic
secret-key agreement. In Advance in Cryptology – ASIACRYPT ’98, pages
405–419, 1998.

[Yao82a] A. C. Yao. Protocols for secure computations. In 2013 IEEE 54th An-
nual Symposium on Foundations of Computer Science, pages 160–164. IEEE,
1982.

[Yao82b] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In FOCS, pages 160–164, 1982.

[Yao82c] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (ex-
tended abstract). In FOCS, pages 80–91, 1982.

[Zuc97] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures
and Algorithms, 11(4):345–367, 1997.

[Zuc07] D. Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing, 3:103–128, 2007.

[Zwi96] Uri Zwick. Lecture notes. http://www.cs.tau.ac.il/~zwick/

circ-comp-new/six.ps, 1996.

207

http://www.cs.tau.ac.il/~zwick/circ-comp-new/six.ps
http://www.cs.tau.ac.il/~zwick/circ-comp-new/six.ps

	1 Introduction
	1.1 Our Results
	1.2 Results Not Included in This Thesis
	1.3 Organization
	1.4 Papers On Which This Thesis is Based On

	2 Basic Definitions and Results from Pseudorandomness
	2.1 Basic Notions in Probability
	2.2 Basic Lemmata in Probability
	2.3 Extractors
	2.4 Small-Bias Sets
	2.5 Unbalanced Expander Graphs

	3 Non-Malleable Extractors with Short Seeds and Applications to Privacy Amplification
	3.1 Non-Malleable Extractors and Privacy Amplification
	3.2 Our Contribution
	3.3 Overview of the Construction
	3.4 Privacy Amplification Protocols Preliminaries
	3.5 A Central Lemma from Raz05
	3.6 A Simple Lemma about Graphs
	3.7 A Conditional Parity Lemma
	3.8 Proof of Main Theorem
	3.9 The Privacy Amplification Protocol

	4 Local Correlation Breakers and Applications to Multi-Source Extractors and Mergers
	4.1 Local Correlation Breakers
	4.2 Applications of LCBs
	4.3 (L,R)-Histories
	4.4 Two-Steps Look-Ahead Extractors
	4.5 Proof of Lemma 4.8
	4.6 A Warm Up – Merging Three Rows
	4.7 Local Correlation Breakers
	4.8 Mergers with Weak-Seeds
	4.9 Three-Source Extractors with a Double-Logarithmic Entropy Source
	4.10 Two-Source Non-Malleable Extractors

	5 Zero-Fixing Extractors for Sub-Logarithmic Entropy
	5.1 Bit-Fixing Sources
	5.2 Our Contribution
	5.3 Proofs Overview
	5.4 An Impossibility Result
	5.5 Explicit Zero-Fixing Extractors for Double Logarithmic Entropy
	5.6 Bit-Fixing Extractors for Double-Logarithmic Entropy

	6 Efficient Multiparty Protocols via Log-Depth Threshold Formulae
	6.1 Secure Multiparty Computation
	6.2 Our Approach
	6.3 Threshold Formulae from Threshold Gates
	6.4 Our Results
	6.5 Proof Overview of Complexity-Theoretic Results
	6.6 Preliminaries for the Complexity Theoretic Results
	6.7 Threshold Formulae from Threshold Gates
	6.8 Majority Formulae from Majority Gates
	6.9 From Threshold Formulae to Broadcast
	6.10 The Multiparty Computation Framework
	6.11 From Threshold Formulae to Secure Multiparty Computation
	6.12 Secure MPC over Blackbox Rings
	6.13 Secure MPC over Groups

	7 On Rigid Matrices and U-Polynomials
	7.1 Matrix Rigidity
	7.2 Our Contribution
	7.3 U-Polynomials
	7.4 Small-Bias Sets as Rigid Sets
	7.5 Rigid Sets from Unbalanced Expanders
	7.6 From General Dimension k to Dimension n/2

	8 Gradual small-bias sample spaces
	8.1 Introduction
	8.2 Previous Results Used By the Construction
	8.3 The Construction
	8.4 Non-Linear Bias Decay

	Bibliography

